Spaces:
Runtime error
Runtime error
File size: 10,058 Bytes
b621857 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
# -*- coding: utf-8 -*-
import math
import torch
import torch.nn as nn
from typing import Optional
import warnings
from michelangelo.models.modules.checkpoint import checkpoint
def _trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor | nn.Parameter, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
applied while sampling the normal with mean/std applied, therefore a, b args
should be adjusted to match the range of mean, std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
with torch.no_grad():
return _trunc_normal_(tensor, mean, std, a, b)
def init_weights(m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
class MultiheadAttention(nn.Module):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
n_ctx: int,
width: int,
heads: int,
qkv_bias: bool
):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.heads = heads
self.c_qkv = nn.Linear(width, width * 3, bias=qkv_bias, device=device, dtype=dtype)
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
self.attention = QKVMultiheadAttention(device=device, dtype=dtype, heads=heads, n_ctx=n_ctx)
def forward(self, x):
x = self.c_qkv(x)
x = checkpoint(self.attention, (x,), (), True)
x = self.c_proj(x)
return x
class QKVMultiheadAttention(nn.Module):
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_ctx: int):
super().__init__()
self.device = device
self.dtype = dtype
self.heads = heads
self.n_ctx = n_ctx
def forward(self, qkv):
bs, n_ctx, width = qkv.shape
attn_ch = width // self.heads // 3
scale = 1 / math.sqrt(attn_ch)
qkv = qkv.view(bs, n_ctx, self.heads, -1)
q, k, v = torch.split(qkv, attn_ch, dim=-1)
weight = torch.einsum("bthc,bshc->bhts", q, k) * scale
wdtype = weight.dtype
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
class ResidualAttentionBlock(nn.Module):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
n_ctx: int,
width: int,
heads: int,
qkv_bias: bool = True,
use_checkpoint: bool = False
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.attn = MultiheadAttention(
device=device,
dtype=dtype,
n_ctx=n_ctx,
width=width,
heads=heads,
qkv_bias=qkv_bias
)
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
self.mlp = MLP(device=device, dtype=dtype, width=width)
self.ln_2 = nn.LayerNorm(width, device=device, dtype=dtype)
def _forward(self, x: torch.Tensor):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
def forward(self, x: torch.Tensor):
return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
class MultiheadCrossAttention(nn.Module):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
width: int,
heads: int,
qkv_bias: bool = True,
n_data: Optional[int] = None,
data_width: Optional[int] = None,
):
super().__init__()
self.n_data = n_data
self.width = width
self.heads = heads
self.data_width = width if data_width is None else data_width
self.c_q = nn.Linear(width, width, bias=qkv_bias, device=device, dtype=dtype)
self.c_kv = nn.Linear(self.data_width, width * 2, bias=qkv_bias, device=device, dtype=dtype)
self.c_proj = nn.Linear(width, width, device=device, dtype=dtype)
self.attention = QKVMultiheadCrossAttention(
device=device, dtype=dtype, heads=heads, n_data=n_data
)
def forward(self, x, data):
x = self.c_q(x)
data = self.c_kv(data)
x = checkpoint(self.attention, (x, data), (), True)
x = self.c_proj(x)
return x
class QKVMultiheadCrossAttention(nn.Module):
def __init__(self, *, device: torch.device, dtype: torch.dtype, heads: int, n_data: Optional[int] = None):
super().__init__()
self.device = device
self.dtype = dtype
self.heads = heads
self.n_data = n_data
def forward(self, q, kv):
_, n_ctx, _ = q.shape
bs, n_data, width = kv.shape
attn_ch = width // self.heads // 2
scale = 1 / math.sqrt(attn_ch)
q = q.view(bs, n_ctx, self.heads, -1)
kv = kv.view(bs, n_data, self.heads, -1)
k, v = torch.split(kv, attn_ch, dim=-1)
weight = torch.einsum("bthc,bshc->bhts", q, k) * scale
wdtype = weight.dtype
weight = torch.softmax(weight.float(), dim=-1).type(wdtype)
return torch.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1)
class ResidualCrossAttentionBlock(nn.Module):
def __init__(
self,
*,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
n_data: Optional[int] = None,
width: int,
heads: int,
data_width: Optional[int] = None,
qkv_bias: bool = True
):
super().__init__()
if data_width is None:
data_width = width
self.attn = MultiheadCrossAttention(
device=device,
dtype=dtype,
n_data=n_data,
width=width,
heads=heads,
data_width=data_width,
qkv_bias=qkv_bias
)
self.ln_1 = nn.LayerNorm(width, device=device, dtype=dtype)
self.ln_2 = nn.LayerNorm(data_width, device=device, dtype=dtype)
self.mlp = MLP(device=device, dtype=dtype, width=width)
self.ln_3 = nn.LayerNorm(width, device=device, dtype=dtype)
def forward(self, x: torch.Tensor, data: torch.Tensor):
x = x + self.attn(self.ln_1(x), self.ln_2(data))
x = x + self.mlp(self.ln_3(x))
return x
class MLP(nn.Module):
def __init__(self, *,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
width: int):
super().__init__()
self.width = width
self.c_fc = nn.Linear(width, width * 4, device=device, dtype=dtype)
self.c_proj = nn.Linear(width * 4, width, device=device, dtype=dtype)
self.gelu = nn.GELU()
def forward(self, x):
return self.c_proj(self.gelu(self.c_fc(x)))
class Transformer(nn.Module):
def __init__(
self,
*,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
n_ctx: int,
width: int,
layers: int,
heads: int,
qkv_bias: bool = True,
use_checkpoint: bool = False
):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.layers = layers
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(
device=device,
dtype=dtype,
n_ctx=n_ctx,
width=width,
heads=heads,
qkv_bias=qkv_bias,
use_checkpoint=use_checkpoint
)
for _ in range(layers)
]
)
self.apply(init_weights)
def forward(self, x: torch.Tensor):
for block in self.resblocks:
x = block(x)
return x
|