Spaces:
Runtime error
Runtime error
related files and example data
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- configs/aligned_shape_latents/shapevae-256.yaml +46 -0
- configs/deploy/clip_aslp_3df+3dc+abo+gso+toy+t10k+obj+sp+pk=256_01_4096_8_ckpt_250000_udt=110M_finetune_500000_deploy.yaml +181 -0
- configs/deploy/clip_sp+pk_aslperceiver=256_01_4096_8_udt=03.yaml +180 -0
- configs/image_cond_diffuser_asl/image-ASLDM-256.yaml +97 -0
- configs/text_cond_diffuser_asl/text-ASLDM-256.yaml +98 -0
- example_data/image/car.jpg +0 -0
- example_data/surface/surface.npz +3 -0
- gradio_cached_dir/example/img_example/airplane.jpg +0 -0
- gradio_cached_dir/example/img_example/alita.jpg +0 -0
- gradio_cached_dir/example/img_example/bag.jpg +0 -0
- gradio_cached_dir/example/img_example/bench.jpg +0 -0
- gradio_cached_dir/example/img_example/building.jpg +0 -0
- gradio_cached_dir/example/img_example/burger.jpg +0 -0
- gradio_cached_dir/example/img_example/car.jpg +0 -0
- gradio_cached_dir/example/img_example/loopy.jpg +0 -0
- gradio_cached_dir/example/img_example/mario.jpg +0 -0
- gradio_cached_dir/example/img_example/ship.jpg +0 -0
- michelangelo/__init__.py +1 -0
- michelangelo/__pycache__/__init__.cpython-39.pyc +0 -0
- michelangelo/data/__init__.py +1 -0
- michelangelo/data/__pycache__/__init__.cpython-39.pyc +0 -0
- michelangelo/data/__pycache__/asl_webdataset.cpython-39.pyc +0 -0
- michelangelo/data/__pycache__/tokenizer.cpython-39.pyc +0 -0
- michelangelo/data/__pycache__/transforms.cpython-39.pyc +0 -0
- michelangelo/data/__pycache__/utils.cpython-39.pyc +0 -0
- michelangelo/data/templates.json +69 -0
- michelangelo/data/transforms.py +407 -0
- michelangelo/data/utils.py +59 -0
- michelangelo/graphics/__init__.py +1 -0
- michelangelo/graphics/__pycache__/__init__.cpython-39.pyc +0 -0
- michelangelo/graphics/primitives/__init__.py +9 -0
- michelangelo/graphics/primitives/__pycache__/__init__.cpython-39.pyc +0 -0
- michelangelo/graphics/primitives/__pycache__/extract_texture_map.cpython-39.pyc +0 -0
- michelangelo/graphics/primitives/__pycache__/mesh.cpython-39.pyc +0 -0
- michelangelo/graphics/primitives/__pycache__/volume.cpython-39.pyc +0 -0
- michelangelo/graphics/primitives/mesh.py +114 -0
- michelangelo/graphics/primitives/volume.py +21 -0
- michelangelo/models/__init__.py +1 -0
- michelangelo/models/__pycache__/__init__.cpython-39.pyc +0 -0
- michelangelo/models/asl_diffusion/__init__.py +1 -0
- michelangelo/models/asl_diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
- michelangelo/models/asl_diffusion/__pycache__/asl_udt.cpython-39.pyc +0 -0
- michelangelo/models/asl_diffusion/__pycache__/clip_asl_diffuser_pl_module.cpython-39.pyc +0 -0
- michelangelo/models/asl_diffusion/__pycache__/inference_utils.cpython-39.pyc +0 -0
- michelangelo/models/asl_diffusion/asl_diffuser_pl_module.py +483 -0
- michelangelo/models/asl_diffusion/asl_udt.py +104 -0
- michelangelo/models/asl_diffusion/base.py +13 -0
- michelangelo/models/asl_diffusion/clip_asl_diffuser_pl_module.py +393 -0
- michelangelo/models/asl_diffusion/inference_utils.py +80 -0
- michelangelo/models/conditional_encoders/__init__.py +3 -0
configs/aligned_shape_latents/shapevae-256.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule
|
3 |
+
params:
|
4 |
+
shape_module_cfg:
|
5 |
+
target: michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver
|
6 |
+
params:
|
7 |
+
num_latents: 256
|
8 |
+
embed_dim: 64
|
9 |
+
point_feats: 3 # normal
|
10 |
+
num_freqs: 8
|
11 |
+
include_pi: false
|
12 |
+
heads: 12
|
13 |
+
width: 768
|
14 |
+
num_encoder_layers: 8
|
15 |
+
num_decoder_layers: 16
|
16 |
+
use_ln_post: true
|
17 |
+
init_scale: 0.25
|
18 |
+
qkv_bias: false
|
19 |
+
use_checkpoint: true
|
20 |
+
aligned_module_cfg:
|
21 |
+
target: michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule
|
22 |
+
params:
|
23 |
+
clip_model_version: "./checkpoints/clip/clip-vit-large-patch14"
|
24 |
+
|
25 |
+
loss_cfg:
|
26 |
+
target: michelangelo.models.tsal.loss.ContrastKLNearFar
|
27 |
+
params:
|
28 |
+
contrast_weight: 0.1
|
29 |
+
near_weight: 0.1
|
30 |
+
kl_weight: 0.001
|
31 |
+
|
32 |
+
optimizer_cfg:
|
33 |
+
optimizer:
|
34 |
+
target: torch.optim.AdamW
|
35 |
+
params:
|
36 |
+
betas: [0.9, 0.99]
|
37 |
+
eps: 1.e-6
|
38 |
+
weight_decay: 1.e-2
|
39 |
+
|
40 |
+
scheduler:
|
41 |
+
target: michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
|
42 |
+
params:
|
43 |
+
warm_up_steps: 5000
|
44 |
+
f_start: 1.e-6
|
45 |
+
f_min: 1.e-3
|
46 |
+
f_max: 1.0
|
configs/deploy/clip_aslp_3df+3dc+abo+gso+toy+t10k+obj+sp+pk=256_01_4096_8_ckpt_250000_udt=110M_finetune_500000_deploy.yaml
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "0630_clip_aslp_3df+3dc+abo+gso+toy+t10k+obj+sp+pk=256_01_4096_8_ckpt_250000_udt=110M_finetune_500000"
|
2 |
+
#wandb:
|
3 |
+
# project: "image_diffuser"
|
4 |
+
# offline: false
|
5 |
+
|
6 |
+
|
7 |
+
training:
|
8 |
+
steps: 500000
|
9 |
+
use_amp: true
|
10 |
+
ckpt_path: ""
|
11 |
+
base_lr: 1.e-4
|
12 |
+
gradient_clip_val: 5.0
|
13 |
+
gradient_clip_algorithm: "norm"
|
14 |
+
every_n_train_steps: 5000
|
15 |
+
val_check_interval: 1024
|
16 |
+
limit_val_batches: 16
|
17 |
+
|
18 |
+
dataset:
|
19 |
+
target: michelangelo.data.asl_webdataset.MultiAlignedShapeLatentModule
|
20 |
+
params:
|
21 |
+
batch_size: 38
|
22 |
+
num_workers: 4
|
23 |
+
val_num_workers: 4
|
24 |
+
buffer_size: 256
|
25 |
+
return_normal: true
|
26 |
+
random_crop: false
|
27 |
+
surface_sampling: true
|
28 |
+
pc_size: &pc_size 4096
|
29 |
+
image_size: 384
|
30 |
+
mean: &mean [0.5, 0.5, 0.5]
|
31 |
+
std: &std [0.5, 0.5, 0.5]
|
32 |
+
cond_stage_key: "image"
|
33 |
+
|
34 |
+
meta_info:
|
35 |
+
3D-FUTURE:
|
36 |
+
render_folder: "/root/workspace/cq_workspace/datasets/3D-FUTURE/renders"
|
37 |
+
tar_folder: "/root/workspace/datasets/make_tars/3D-FUTURE"
|
38 |
+
|
39 |
+
ABO:
|
40 |
+
render_folder: "/root/workspace/cq_workspace/datasets/ABO/renders"
|
41 |
+
tar_folder: "/root/workspace/datasets/make_tars/ABO"
|
42 |
+
|
43 |
+
GSO:
|
44 |
+
render_folder: "/root/workspace/cq_workspace/datasets/GSO/renders"
|
45 |
+
tar_folder: "/root/workspace/datasets/make_tars/GSO"
|
46 |
+
|
47 |
+
TOYS4K:
|
48 |
+
render_folder: "/root/workspace/cq_workspace/datasets/TOYS4K/TOYS4K/renders"
|
49 |
+
tar_folder: "/root/workspace/datasets/make_tars/TOYS4K"
|
50 |
+
|
51 |
+
3DCaricShop:
|
52 |
+
render_folder: "/root/workspace/cq_workspace/datasets/3DCaricShop/renders"
|
53 |
+
tar_folder: "/root/workspace/datasets/make_tars/3DCaricShop"
|
54 |
+
|
55 |
+
Thingi10K:
|
56 |
+
render_folder: "/root/workspace/cq_workspace/datasets/Thingi10K/renders"
|
57 |
+
tar_folder: "/root/workspace/datasets/make_tars/Thingi10K"
|
58 |
+
|
59 |
+
shapenet:
|
60 |
+
render_folder: "/root/workspace/cq_workspace/datasets/shapenet/renders"
|
61 |
+
tar_folder: "/root/workspace/datasets/make_tars/shapenet"
|
62 |
+
|
63 |
+
pokemon:
|
64 |
+
render_folder: "/root/workspace/cq_workspace/datasets/pokemon/renders"
|
65 |
+
tar_folder: "/root/workspace/datasets/make_tars/pokemon"
|
66 |
+
|
67 |
+
objaverse:
|
68 |
+
render_folder: "/root/workspace/cq_workspace/datasets/objaverse/renders"
|
69 |
+
tar_folder: "/root/workspace/datasets/make_tars/objaverse"
|
70 |
+
|
71 |
+
model:
|
72 |
+
target: michelangelo.models.asl_diffusion.clip_asl_diffuser_pl_module.ClipASLDiffuser
|
73 |
+
params:
|
74 |
+
first_stage_config:
|
75 |
+
target: michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule
|
76 |
+
params:
|
77 |
+
shape_module_cfg:
|
78 |
+
target: michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver
|
79 |
+
params:
|
80 |
+
num_latents: &num_latents 256
|
81 |
+
embed_dim: &embed_dim 64
|
82 |
+
point_feats: 3 # normal
|
83 |
+
num_freqs: 8
|
84 |
+
include_pi: false
|
85 |
+
heads: 12
|
86 |
+
width: 768
|
87 |
+
num_encoder_layers: 8
|
88 |
+
num_decoder_layers: 16
|
89 |
+
use_ln_post: true
|
90 |
+
init_scale: 0.25
|
91 |
+
qkv_bias: false
|
92 |
+
use_checkpoint: false
|
93 |
+
aligned_module_cfg:
|
94 |
+
target: michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule
|
95 |
+
params:
|
96 |
+
clip_model_version: "/mnt/shadow_cv_training/stevenxxliu/checkpoints/clip/clip-vit-large-patch14"
|
97 |
+
# clip_model_version: "/root/workspace/checkpoints/clip/clip-vit-large-patch14"
|
98 |
+
|
99 |
+
loss_cfg:
|
100 |
+
target: torch.nn.Identity
|
101 |
+
|
102 |
+
cond_stage_config:
|
103 |
+
target: michelangelo.models.conditional_encoders.encoder_factory.FrozenCLIPImageGridEmbedder
|
104 |
+
params:
|
105 |
+
version: "/mnt/shadow_cv_training/stevenxxliu/checkpoints/clip/clip-vit-large-patch14"
|
106 |
+
# version: "/root/workspace/checkpoints/clip/clip-vit-large-patch14"
|
107 |
+
zero_embedding_radio: 0.1
|
108 |
+
|
109 |
+
first_stage_key: "surface"
|
110 |
+
cond_stage_key: "image"
|
111 |
+
scale_by_std: false
|
112 |
+
|
113 |
+
denoiser_cfg:
|
114 |
+
target: michelangelo.models.asl_diffusion.asl_udt.ConditionalASLUDTDenoiser
|
115 |
+
params:
|
116 |
+
input_channels: *embed_dim
|
117 |
+
output_channels: *embed_dim
|
118 |
+
n_ctx: *num_latents
|
119 |
+
width: 768
|
120 |
+
layers: 6 # 2 * 6 + 1 = 13
|
121 |
+
heads: 12
|
122 |
+
context_dim: 1024
|
123 |
+
init_scale: 1.0
|
124 |
+
skip_ln: true
|
125 |
+
use_checkpoint: true
|
126 |
+
|
127 |
+
scheduler_cfg:
|
128 |
+
guidance_scale: 7.5
|
129 |
+
num_inference_steps: 50
|
130 |
+
eta: 0.0
|
131 |
+
|
132 |
+
noise:
|
133 |
+
target: diffusers.schedulers.DDPMScheduler
|
134 |
+
params:
|
135 |
+
num_train_timesteps: 1000
|
136 |
+
beta_start: 0.00085
|
137 |
+
beta_end: 0.012
|
138 |
+
beta_schedule: "scaled_linear"
|
139 |
+
variance_type: "fixed_small"
|
140 |
+
clip_sample: false
|
141 |
+
denoise:
|
142 |
+
target: diffusers.schedulers.DDIMScheduler
|
143 |
+
params:
|
144 |
+
num_train_timesteps: 1000
|
145 |
+
beta_start: 0.00085
|
146 |
+
beta_end: 0.012
|
147 |
+
beta_schedule: "scaled_linear"
|
148 |
+
clip_sample: false # clip sample to -1~1
|
149 |
+
set_alpha_to_one: false
|
150 |
+
steps_offset: 1
|
151 |
+
|
152 |
+
optimizer_cfg:
|
153 |
+
optimizer:
|
154 |
+
target: torch.optim.AdamW
|
155 |
+
params:
|
156 |
+
betas: [0.9, 0.99]
|
157 |
+
eps: 1.e-6
|
158 |
+
weight_decay: 1.e-2
|
159 |
+
|
160 |
+
scheduler:
|
161 |
+
target: michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
|
162 |
+
params:
|
163 |
+
warm_up_steps: 5000
|
164 |
+
f_start: 1.e-6
|
165 |
+
f_min: 1.e-3
|
166 |
+
f_max: 1.0
|
167 |
+
|
168 |
+
loss_cfg:
|
169 |
+
loss_type: "mse"
|
170 |
+
|
171 |
+
logger:
|
172 |
+
target: michelangelo.utils.trainings.mesh_log_callback.ImageConditionalASLDiffuserLogger
|
173 |
+
params:
|
174 |
+
step_frequency: 2000
|
175 |
+
num_samples: 4
|
176 |
+
sample_times: 4
|
177 |
+
mean: *mean
|
178 |
+
std: *std
|
179 |
+
bounds: [-1.1, -1.1, -1.1, 1.1, 1.1, 1.1]
|
180 |
+
octree_depth: 7
|
181 |
+
num_chunks: 10000
|
configs/deploy/clip_sp+pk_aslperceiver=256_01_4096_8_udt=03.yaml
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "0428_clip_subsp+pk_sal_perceiver=256_01_4096_8_udt=03"
|
2 |
+
#wandb:
|
3 |
+
# project: "image_diffuser"
|
4 |
+
# offline: false
|
5 |
+
|
6 |
+
training:
|
7 |
+
steps: 500000
|
8 |
+
use_amp: true
|
9 |
+
ckpt_path: ""
|
10 |
+
base_lr: 1.e-4
|
11 |
+
gradient_clip_val: 5.0
|
12 |
+
gradient_clip_algorithm: "norm"
|
13 |
+
every_n_train_steps: 5000
|
14 |
+
val_check_interval: 1024
|
15 |
+
limit_val_batches: 16
|
16 |
+
|
17 |
+
# dataset
|
18 |
+
dataset:
|
19 |
+
target: michelangelo.data.asl_torch_dataset.MultiAlignedShapeImageTextModule
|
20 |
+
params:
|
21 |
+
batch_size: 38
|
22 |
+
num_workers: 4
|
23 |
+
val_num_workers: 4
|
24 |
+
buffer_size: 256
|
25 |
+
return_normal: true
|
26 |
+
random_crop: false
|
27 |
+
surface_sampling: true
|
28 |
+
pc_size: &pc_size 4096
|
29 |
+
image_size: 384
|
30 |
+
mean: &mean [0.5, 0.5, 0.5]
|
31 |
+
std: &std [0.5, 0.5, 0.5]
|
32 |
+
|
33 |
+
cond_stage_key: "text"
|
34 |
+
|
35 |
+
meta_info:
|
36 |
+
3D-FUTURE:
|
37 |
+
render_folder: "/root/workspace/cq_workspace/datasets/3D-FUTURE/renders"
|
38 |
+
tar_folder: "/root/workspace/datasets/make_tars/3D-FUTURE"
|
39 |
+
|
40 |
+
ABO:
|
41 |
+
render_folder: "/root/workspace/cq_workspace/datasets/ABO/renders"
|
42 |
+
tar_folder: "/root/workspace/datasets/make_tars/ABO"
|
43 |
+
|
44 |
+
GSO:
|
45 |
+
render_folder: "/root/workspace/cq_workspace/datasets/GSO/renders"
|
46 |
+
tar_folder: "/root/workspace/datasets/make_tars/GSO"
|
47 |
+
|
48 |
+
TOYS4K:
|
49 |
+
render_folder: "/root/workspace/cq_workspace/datasets/TOYS4K/TOYS4K/renders"
|
50 |
+
tar_folder: "/root/workspace/datasets/make_tars/TOYS4K"
|
51 |
+
|
52 |
+
3DCaricShop:
|
53 |
+
render_folder: "/root/workspace/cq_workspace/datasets/3DCaricShop/renders"
|
54 |
+
tar_folder: "/root/workspace/datasets/make_tars/3DCaricShop"
|
55 |
+
|
56 |
+
Thingi10K:
|
57 |
+
render_folder: "/root/workspace/cq_workspace/datasets/Thingi10K/renders"
|
58 |
+
tar_folder: "/root/workspace/datasets/make_tars/Thingi10K"
|
59 |
+
|
60 |
+
shapenet:
|
61 |
+
render_folder: "/root/workspace/cq_workspace/datasets/shapenet/renders"
|
62 |
+
tar_folder: "/root/workspace/datasets/make_tars/shapenet"
|
63 |
+
|
64 |
+
pokemon:
|
65 |
+
render_folder: "/root/workspace/cq_workspace/datasets/pokemon/renders"
|
66 |
+
tar_folder: "/root/workspace/datasets/make_tars/pokemon"
|
67 |
+
|
68 |
+
objaverse:
|
69 |
+
render_folder: "/root/workspace/cq_workspace/datasets/objaverse/renders"
|
70 |
+
tar_folder: "/root/workspace/datasets/make_tars/objaverse"
|
71 |
+
|
72 |
+
model:
|
73 |
+
target: michelangelo.models.asl_diffusion.clip_asl_diffuser_pl_module.ClipASLDiffuser
|
74 |
+
params:
|
75 |
+
first_stage_config:
|
76 |
+
target: michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule
|
77 |
+
params:
|
78 |
+
# ckpt_path: "/root/workspace/cq_workspace/michelangelo/experiments/aligned_shape_latents/clip_aslperceiver_sp+pk_01_01/ckpt/ckpt-step=00230000.ckpt"
|
79 |
+
shape_module_cfg:
|
80 |
+
target: michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver
|
81 |
+
params:
|
82 |
+
num_latents: &num_latents 256
|
83 |
+
embed_dim: &embed_dim 64
|
84 |
+
point_feats: 3 # normal
|
85 |
+
num_freqs: 8
|
86 |
+
include_pi: false
|
87 |
+
heads: 12
|
88 |
+
width: 768
|
89 |
+
num_encoder_layers: 8
|
90 |
+
num_decoder_layers: 16
|
91 |
+
use_ln_post: true
|
92 |
+
init_scale: 0.25
|
93 |
+
qkv_bias: false
|
94 |
+
use_checkpoint: true
|
95 |
+
aligned_module_cfg:
|
96 |
+
target: michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule
|
97 |
+
params:
|
98 |
+
clip_model_version: "/mnt/shadow_cv_training/stevenxxliu/checkpoints/clip/clip-vit-large-patch14"
|
99 |
+
|
100 |
+
loss_cfg:
|
101 |
+
target: torch.nn.Identity
|
102 |
+
|
103 |
+
cond_stage_config:
|
104 |
+
target: michelangelo.models.conditional_encoders.encoder_factory.FrozenAlignedCLIPTextEmbedder
|
105 |
+
params:
|
106 |
+
version: "/mnt/shadow_cv_training/stevenxxliu/checkpoints/clip/clip-vit-large-patch14"
|
107 |
+
zero_embedding_radio: 0.1
|
108 |
+
max_length: 77
|
109 |
+
|
110 |
+
first_stage_key: "surface"
|
111 |
+
cond_stage_key: "text"
|
112 |
+
scale_by_std: false
|
113 |
+
|
114 |
+
denoiser_cfg:
|
115 |
+
target: michelangelo.models.asl_diffusion.asl_udt.ConditionalASLUDTDenoiser
|
116 |
+
params:
|
117 |
+
input_channels: *embed_dim
|
118 |
+
output_channels: *embed_dim
|
119 |
+
n_ctx: *num_latents
|
120 |
+
width: 768
|
121 |
+
layers: 8 # 2 * 6 + 1 = 13
|
122 |
+
heads: 12
|
123 |
+
context_dim: 768
|
124 |
+
init_scale: 1.0
|
125 |
+
skip_ln: true
|
126 |
+
use_checkpoint: true
|
127 |
+
|
128 |
+
scheduler_cfg:
|
129 |
+
guidance_scale: 7.5
|
130 |
+
num_inference_steps: 50
|
131 |
+
eta: 0.0
|
132 |
+
|
133 |
+
noise:
|
134 |
+
target: diffusers.schedulers.DDPMScheduler
|
135 |
+
params:
|
136 |
+
num_train_timesteps: 1000
|
137 |
+
beta_start: 0.00085
|
138 |
+
beta_end: 0.012
|
139 |
+
beta_schedule: "scaled_linear"
|
140 |
+
variance_type: "fixed_small"
|
141 |
+
clip_sample: false
|
142 |
+
denoise:
|
143 |
+
target: diffusers.schedulers.DDIMScheduler
|
144 |
+
params:
|
145 |
+
num_train_timesteps: 1000
|
146 |
+
beta_start: 0.00085
|
147 |
+
beta_end: 0.012
|
148 |
+
beta_schedule: "scaled_linear"
|
149 |
+
clip_sample: false # clip sample to -1~1
|
150 |
+
set_alpha_to_one: false
|
151 |
+
steps_offset: 1
|
152 |
+
|
153 |
+
optimizer_cfg:
|
154 |
+
optimizer:
|
155 |
+
target: torch.optim.AdamW
|
156 |
+
params:
|
157 |
+
betas: [0.9, 0.99]
|
158 |
+
eps: 1.e-6
|
159 |
+
weight_decay: 1.e-2
|
160 |
+
|
161 |
+
scheduler:
|
162 |
+
target: michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
|
163 |
+
params:
|
164 |
+
warm_up_steps: 5000
|
165 |
+
f_start: 1.e-6
|
166 |
+
f_min: 1.e-3
|
167 |
+
f_max: 1.0
|
168 |
+
|
169 |
+
loss_cfg:
|
170 |
+
loss_type: "mse"
|
171 |
+
|
172 |
+
logger:
|
173 |
+
target: michelangelo.utils.trainings.mesh_log_callback.TextConditionalASLDiffuserLogger
|
174 |
+
params:
|
175 |
+
step_frequency: 1000
|
176 |
+
num_samples: 4
|
177 |
+
sample_times: 4
|
178 |
+
bounds: [-1.1, -1.1, -1.1, 1.1, 1.1, 1.1]
|
179 |
+
octree_depth: 7
|
180 |
+
num_chunks: 10000
|
configs/image_cond_diffuser_asl/image-ASLDM-256.yaml
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: michelangelo.models.asl_diffusion.clip_asl_diffuser_pl_module.ClipASLDiffuser
|
3 |
+
params:
|
4 |
+
first_stage_config:
|
5 |
+
target: michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule
|
6 |
+
params:
|
7 |
+
shape_module_cfg:
|
8 |
+
target: michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver
|
9 |
+
params:
|
10 |
+
num_latents: &num_latents 256
|
11 |
+
embed_dim: &embed_dim 64
|
12 |
+
point_feats: 3 # normal
|
13 |
+
num_freqs: 8
|
14 |
+
include_pi: false
|
15 |
+
heads: 12
|
16 |
+
width: 768
|
17 |
+
num_encoder_layers: 8
|
18 |
+
num_decoder_layers: 16
|
19 |
+
use_ln_post: true
|
20 |
+
init_scale: 0.25
|
21 |
+
qkv_bias: false
|
22 |
+
use_checkpoint: false
|
23 |
+
aligned_module_cfg:
|
24 |
+
target: michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule
|
25 |
+
params:
|
26 |
+
clip_model_version: "./checkpoints/clip/clip-vit-large-patch14"
|
27 |
+
|
28 |
+
loss_cfg:
|
29 |
+
target: torch.nn.Identity
|
30 |
+
|
31 |
+
cond_stage_config:
|
32 |
+
target: michelangelo.models.conditional_encoders.encoder_factory.FrozenCLIPImageGridEmbedder
|
33 |
+
params:
|
34 |
+
version: "./checkpoints/clip/clip-vit-large-patch14"
|
35 |
+
zero_embedding_radio: 0.1
|
36 |
+
|
37 |
+
first_stage_key: "surface"
|
38 |
+
cond_stage_key: "image"
|
39 |
+
scale_by_std: false
|
40 |
+
|
41 |
+
denoiser_cfg:
|
42 |
+
target: michelangelo.models.asl_diffusion.asl_udt.ConditionalASLUDTDenoiser
|
43 |
+
params:
|
44 |
+
input_channels: *embed_dim
|
45 |
+
output_channels: *embed_dim
|
46 |
+
n_ctx: *num_latents
|
47 |
+
width: 768
|
48 |
+
layers: 6 # 2 * 6 + 1 = 13
|
49 |
+
heads: 12
|
50 |
+
context_dim: 1024
|
51 |
+
init_scale: 1.0
|
52 |
+
skip_ln: true
|
53 |
+
use_checkpoint: true
|
54 |
+
|
55 |
+
scheduler_cfg:
|
56 |
+
guidance_scale: 7.5
|
57 |
+
num_inference_steps: 50
|
58 |
+
eta: 0.0
|
59 |
+
|
60 |
+
noise:
|
61 |
+
target: diffusers.schedulers.DDPMScheduler
|
62 |
+
params:
|
63 |
+
num_train_timesteps: 1000
|
64 |
+
beta_start: 0.00085
|
65 |
+
beta_end: 0.012
|
66 |
+
beta_schedule: "scaled_linear"
|
67 |
+
variance_type: "fixed_small"
|
68 |
+
clip_sample: false
|
69 |
+
denoise:
|
70 |
+
target: diffusers.schedulers.DDIMScheduler
|
71 |
+
params:
|
72 |
+
num_train_timesteps: 1000
|
73 |
+
beta_start: 0.00085
|
74 |
+
beta_end: 0.012
|
75 |
+
beta_schedule: "scaled_linear"
|
76 |
+
clip_sample: false # clip sample to -1~1
|
77 |
+
set_alpha_to_one: false
|
78 |
+
steps_offset: 1
|
79 |
+
|
80 |
+
optimizer_cfg:
|
81 |
+
optimizer:
|
82 |
+
target: torch.optim.AdamW
|
83 |
+
params:
|
84 |
+
betas: [0.9, 0.99]
|
85 |
+
eps: 1.e-6
|
86 |
+
weight_decay: 1.e-2
|
87 |
+
|
88 |
+
scheduler:
|
89 |
+
target: michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
|
90 |
+
params:
|
91 |
+
warm_up_steps: 5000
|
92 |
+
f_start: 1.e-6
|
93 |
+
f_min: 1.e-3
|
94 |
+
f_max: 1.0
|
95 |
+
|
96 |
+
loss_cfg:
|
97 |
+
loss_type: "mse"
|
configs/text_cond_diffuser_asl/text-ASLDM-256.yaml
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
target: michelangelo.models.asl_diffusion.clip_asl_diffuser_pl_module.ClipASLDiffuser
|
3 |
+
params:
|
4 |
+
first_stage_config:
|
5 |
+
target: michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule
|
6 |
+
params:
|
7 |
+
shape_module_cfg:
|
8 |
+
target: michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver
|
9 |
+
params:
|
10 |
+
num_latents: &num_latents 256
|
11 |
+
embed_dim: &embed_dim 64
|
12 |
+
point_feats: 3 # normal
|
13 |
+
num_freqs: 8
|
14 |
+
include_pi: false
|
15 |
+
heads: 12
|
16 |
+
width: 768
|
17 |
+
num_encoder_layers: 8
|
18 |
+
num_decoder_layers: 16
|
19 |
+
use_ln_post: true
|
20 |
+
init_scale: 0.25
|
21 |
+
qkv_bias: false
|
22 |
+
use_checkpoint: true
|
23 |
+
aligned_module_cfg:
|
24 |
+
target: michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule
|
25 |
+
params:
|
26 |
+
clip_model_version: "./checkpoints/clip/clip-vit-large-patch14"
|
27 |
+
|
28 |
+
loss_cfg:
|
29 |
+
target: torch.nn.Identity
|
30 |
+
|
31 |
+
cond_stage_config:
|
32 |
+
target: michelangelo.models.conditional_encoders.encoder_factory.FrozenAlignedCLIPTextEmbedder
|
33 |
+
params:
|
34 |
+
version: "./checkpoints/clip/clip-vit-large-patch14"
|
35 |
+
zero_embedding_radio: 0.1
|
36 |
+
max_length: 77
|
37 |
+
|
38 |
+
first_stage_key: "surface"
|
39 |
+
cond_stage_key: "text"
|
40 |
+
scale_by_std: false
|
41 |
+
|
42 |
+
denoiser_cfg:
|
43 |
+
target: michelangelo.models.asl_diffusion.asl_udt.ConditionalASLUDTDenoiser
|
44 |
+
params:
|
45 |
+
input_channels: *embed_dim
|
46 |
+
output_channels: *embed_dim
|
47 |
+
n_ctx: *num_latents
|
48 |
+
width: 768
|
49 |
+
layers: 8 # 2 * 6 + 1 = 13
|
50 |
+
heads: 12
|
51 |
+
context_dim: 768
|
52 |
+
init_scale: 1.0
|
53 |
+
skip_ln: true
|
54 |
+
use_checkpoint: true
|
55 |
+
|
56 |
+
scheduler_cfg:
|
57 |
+
guidance_scale: 7.5
|
58 |
+
num_inference_steps: 50
|
59 |
+
eta: 0.0
|
60 |
+
|
61 |
+
noise:
|
62 |
+
target: diffusers.schedulers.DDPMScheduler
|
63 |
+
params:
|
64 |
+
num_train_timesteps: 1000
|
65 |
+
beta_start: 0.00085
|
66 |
+
beta_end: 0.012
|
67 |
+
beta_schedule: "scaled_linear"
|
68 |
+
variance_type: "fixed_small"
|
69 |
+
clip_sample: false
|
70 |
+
denoise:
|
71 |
+
target: diffusers.schedulers.DDIMScheduler
|
72 |
+
params:
|
73 |
+
num_train_timesteps: 1000
|
74 |
+
beta_start: 0.00085
|
75 |
+
beta_end: 0.012
|
76 |
+
beta_schedule: "scaled_linear"
|
77 |
+
clip_sample: false # clip sample to -1~1
|
78 |
+
set_alpha_to_one: false
|
79 |
+
steps_offset: 1
|
80 |
+
|
81 |
+
optimizer_cfg:
|
82 |
+
optimizer:
|
83 |
+
target: torch.optim.AdamW
|
84 |
+
params:
|
85 |
+
betas: [0.9, 0.99]
|
86 |
+
eps: 1.e-6
|
87 |
+
weight_decay: 1.e-2
|
88 |
+
|
89 |
+
scheduler:
|
90 |
+
target: michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
|
91 |
+
params:
|
92 |
+
warm_up_steps: 5000
|
93 |
+
f_start: 1.e-6
|
94 |
+
f_min: 1.e-3
|
95 |
+
f_max: 1.0
|
96 |
+
|
97 |
+
loss_cfg:
|
98 |
+
loss_type: "mse"
|
example_data/image/car.jpg
ADDED
example_data/surface/surface.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0893e44d82ada683baa656a718beaf6ec19fc28b6816b451f56645530d5bb962
|
3 |
+
size 1201024
|
gradio_cached_dir/example/img_example/airplane.jpg
ADDED
gradio_cached_dir/example/img_example/alita.jpg
ADDED
gradio_cached_dir/example/img_example/bag.jpg
ADDED
gradio_cached_dir/example/img_example/bench.jpg
ADDED
gradio_cached_dir/example/img_example/building.jpg
ADDED
gradio_cached_dir/example/img_example/burger.jpg
ADDED
gradio_cached_dir/example/img_example/car.jpg
ADDED
gradio_cached_dir/example/img_example/loopy.jpg
ADDED
gradio_cached_dir/example/img_example/mario.jpg
ADDED
gradio_cached_dir/example/img_example/ship.jpg
ADDED
michelangelo/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
michelangelo/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (176 Bytes). View file
|
|
michelangelo/data/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
michelangelo/data/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (181 Bytes). View file
|
|
michelangelo/data/__pycache__/asl_webdataset.cpython-39.pyc
ADDED
Binary file (9.43 kB). View file
|
|
michelangelo/data/__pycache__/tokenizer.cpython-39.pyc
ADDED
Binary file (6.48 kB). View file
|
|
michelangelo/data/__pycache__/transforms.cpython-39.pyc
ADDED
Binary file (11.4 kB). View file
|
|
michelangelo/data/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (1.13 kB). View file
|
|
michelangelo/data/templates.json
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"shape": [
|
3 |
+
"a point cloud model of {}.",
|
4 |
+
"There is a {} in the scene.",
|
5 |
+
"There is the {} in the scene.",
|
6 |
+
"a photo of a {} in the scene.",
|
7 |
+
"a photo of the {} in the scene.",
|
8 |
+
"a photo of one {} in the scene.",
|
9 |
+
"itap of a {}.",
|
10 |
+
"itap of my {}.",
|
11 |
+
"itap of the {}.",
|
12 |
+
"a photo of a {}.",
|
13 |
+
"a photo of my {}.",
|
14 |
+
"a photo of the {}.",
|
15 |
+
"a photo of one {}.",
|
16 |
+
"a photo of many {}.",
|
17 |
+
"a good photo of a {}.",
|
18 |
+
"a good photo of the {}.",
|
19 |
+
"a bad photo of a {}.",
|
20 |
+
"a bad photo of the {}.",
|
21 |
+
"a photo of a nice {}.",
|
22 |
+
"a photo of the nice {}.",
|
23 |
+
"a photo of a cool {}.",
|
24 |
+
"a photo of the cool {}.",
|
25 |
+
"a photo of a weird {}.",
|
26 |
+
"a photo of the weird {}.",
|
27 |
+
"a photo of a small {}.",
|
28 |
+
"a photo of the small {}.",
|
29 |
+
"a photo of a large {}.",
|
30 |
+
"a photo of the large {}.",
|
31 |
+
"a photo of a clean {}.",
|
32 |
+
"a photo of the clean {}.",
|
33 |
+
"a photo of a dirty {}.",
|
34 |
+
"a photo of the dirty {}.",
|
35 |
+
"a bright photo of a {}.",
|
36 |
+
"a bright photo of the {}.",
|
37 |
+
"a dark photo of a {}.",
|
38 |
+
"a dark photo of the {}.",
|
39 |
+
"a photo of a hard to see {}.",
|
40 |
+
"a photo of the hard to see {}.",
|
41 |
+
"a low resolution photo of a {}.",
|
42 |
+
"a low resolution photo of the {}.",
|
43 |
+
"a cropped photo of a {}.",
|
44 |
+
"a cropped photo of the {}.",
|
45 |
+
"a close-up photo of a {}.",
|
46 |
+
"a close-up photo of the {}.",
|
47 |
+
"a jpeg corrupted photo of a {}.",
|
48 |
+
"a jpeg corrupted photo of the {}.",
|
49 |
+
"a blurry photo of a {}.",
|
50 |
+
"a blurry photo of the {}.",
|
51 |
+
"a pixelated photo of a {}.",
|
52 |
+
"a pixelated photo of the {}.",
|
53 |
+
"a black and white photo of the {}.",
|
54 |
+
"a black and white photo of a {}",
|
55 |
+
"a plastic {}.",
|
56 |
+
"the plastic {}.",
|
57 |
+
"a toy {}.",
|
58 |
+
"the toy {}.",
|
59 |
+
"a plushie {}.",
|
60 |
+
"the plushie {}.",
|
61 |
+
"a cartoon {}.",
|
62 |
+
"the cartoon {}.",
|
63 |
+
"an embroidered {}.",
|
64 |
+
"the embroidered {}.",
|
65 |
+
"a painting of the {}.",
|
66 |
+
"a painting of a {}."
|
67 |
+
]
|
68 |
+
|
69 |
+
}
|
michelangelo/data/transforms.py
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
import warnings
|
6 |
+
import random
|
7 |
+
from omegaconf.listconfig import ListConfig
|
8 |
+
from webdataset import pipelinefilter
|
9 |
+
import torch
|
10 |
+
import torchvision.transforms.functional as TVF
|
11 |
+
from torchvision.transforms import InterpolationMode
|
12 |
+
from torchvision.transforms.transforms import _interpolation_modes_from_int
|
13 |
+
from typing import Sequence
|
14 |
+
|
15 |
+
from michelangelo.utils import instantiate_from_config
|
16 |
+
|
17 |
+
|
18 |
+
def _uid_buffer_pick(buf_dict, rng):
|
19 |
+
uid_keys = list(buf_dict.keys())
|
20 |
+
selected_uid = rng.choice(uid_keys)
|
21 |
+
buf = buf_dict[selected_uid]
|
22 |
+
|
23 |
+
k = rng.randint(0, len(buf) - 1)
|
24 |
+
sample = buf[k]
|
25 |
+
buf[k] = buf[-1]
|
26 |
+
buf.pop()
|
27 |
+
|
28 |
+
if len(buf) == 0:
|
29 |
+
del buf_dict[selected_uid]
|
30 |
+
|
31 |
+
return sample
|
32 |
+
|
33 |
+
|
34 |
+
def _add_to_buf_dict(buf_dict, sample):
|
35 |
+
key = sample["__key__"]
|
36 |
+
uid, uid_sample_id = key.split("_")
|
37 |
+
if uid not in buf_dict:
|
38 |
+
buf_dict[uid] = []
|
39 |
+
buf_dict[uid].append(sample)
|
40 |
+
|
41 |
+
return buf_dict
|
42 |
+
|
43 |
+
|
44 |
+
def _uid_shuffle(data, bufsize=1000, initial=100, rng=None, handler=None):
|
45 |
+
"""Shuffle the data in the stream.
|
46 |
+
|
47 |
+
This uses a buffer of size `bufsize`. Shuffling at
|
48 |
+
startup is less random; this is traded off against
|
49 |
+
yielding samples quickly.
|
50 |
+
|
51 |
+
data: iterator
|
52 |
+
bufsize: buffer size for shuffling
|
53 |
+
returns: iterator
|
54 |
+
rng: either random module or random.Random instance
|
55 |
+
|
56 |
+
"""
|
57 |
+
if rng is None:
|
58 |
+
rng = random.Random(int((os.getpid() + time.time()) * 1e9))
|
59 |
+
initial = min(initial, bufsize)
|
60 |
+
buf_dict = dict()
|
61 |
+
current_samples = 0
|
62 |
+
for sample in data:
|
63 |
+
_add_to_buf_dict(buf_dict, sample)
|
64 |
+
current_samples += 1
|
65 |
+
|
66 |
+
if current_samples < bufsize:
|
67 |
+
try:
|
68 |
+
_add_to_buf_dict(buf_dict, next(data)) # skipcq: PYL-R1708
|
69 |
+
current_samples += 1
|
70 |
+
except StopIteration:
|
71 |
+
pass
|
72 |
+
|
73 |
+
if current_samples >= initial:
|
74 |
+
current_samples -= 1
|
75 |
+
yield _uid_buffer_pick(buf_dict, rng)
|
76 |
+
|
77 |
+
while current_samples > 0:
|
78 |
+
current_samples -= 1
|
79 |
+
yield _uid_buffer_pick(buf_dict, rng)
|
80 |
+
|
81 |
+
|
82 |
+
uid_shuffle = pipelinefilter(_uid_shuffle)
|
83 |
+
|
84 |
+
|
85 |
+
class RandomSample(object):
|
86 |
+
def __init__(self,
|
87 |
+
num_volume_samples: int = 1024,
|
88 |
+
num_near_samples: int = 1024):
|
89 |
+
|
90 |
+
super().__init__()
|
91 |
+
|
92 |
+
self.num_volume_samples = num_volume_samples
|
93 |
+
self.num_near_samples = num_near_samples
|
94 |
+
|
95 |
+
def __call__(self, sample):
|
96 |
+
rng = np.random.default_rng()
|
97 |
+
|
98 |
+
# 1. sample surface input
|
99 |
+
total_surface = sample["surface"]
|
100 |
+
ind = rng.choice(total_surface.shape[0], replace=False)
|
101 |
+
surface = total_surface[ind]
|
102 |
+
|
103 |
+
# 2. sample volume/near geometric points
|
104 |
+
vol_points = sample["vol_points"]
|
105 |
+
vol_label = sample["vol_label"]
|
106 |
+
near_points = sample["near_points"]
|
107 |
+
near_label = sample["near_label"]
|
108 |
+
|
109 |
+
ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False)
|
110 |
+
vol_points = vol_points[ind]
|
111 |
+
vol_label = vol_label[ind]
|
112 |
+
vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1)
|
113 |
+
|
114 |
+
ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False)
|
115 |
+
near_points = near_points[ind]
|
116 |
+
near_label = near_label[ind]
|
117 |
+
near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1)
|
118 |
+
|
119 |
+
# concat sampled volume and near points
|
120 |
+
geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0)
|
121 |
+
|
122 |
+
sample = {
|
123 |
+
"surface": surface,
|
124 |
+
"geo_points": geo_points
|
125 |
+
}
|
126 |
+
|
127 |
+
return sample
|
128 |
+
|
129 |
+
|
130 |
+
class SplitRandomSample(object):
|
131 |
+
def __init__(self,
|
132 |
+
use_surface_sample: bool = False,
|
133 |
+
num_surface_samples: int = 4096,
|
134 |
+
num_volume_samples: int = 1024,
|
135 |
+
num_near_samples: int = 1024):
|
136 |
+
|
137 |
+
super().__init__()
|
138 |
+
|
139 |
+
self.use_surface_sample = use_surface_sample
|
140 |
+
self.num_surface_samples = num_surface_samples
|
141 |
+
self.num_volume_samples = num_volume_samples
|
142 |
+
self.num_near_samples = num_near_samples
|
143 |
+
|
144 |
+
def __call__(self, sample):
|
145 |
+
|
146 |
+
rng = np.random.default_rng()
|
147 |
+
|
148 |
+
# 1. sample surface input
|
149 |
+
surface = sample["surface"]
|
150 |
+
|
151 |
+
if self.use_surface_sample:
|
152 |
+
replace = surface.shape[0] < self.num_surface_samples
|
153 |
+
ind = rng.choice(surface.shape[0], self.num_surface_samples, replace=replace)
|
154 |
+
surface = surface[ind]
|
155 |
+
|
156 |
+
# 2. sample volume/near geometric points
|
157 |
+
vol_points = sample["vol_points"]
|
158 |
+
vol_label = sample["vol_label"]
|
159 |
+
near_points = sample["near_points"]
|
160 |
+
near_label = sample["near_label"]
|
161 |
+
|
162 |
+
ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False)
|
163 |
+
vol_points = vol_points[ind]
|
164 |
+
vol_label = vol_label[ind]
|
165 |
+
vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1)
|
166 |
+
|
167 |
+
ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False)
|
168 |
+
near_points = near_points[ind]
|
169 |
+
near_label = near_label[ind]
|
170 |
+
near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1)
|
171 |
+
|
172 |
+
# concat sampled volume and near points
|
173 |
+
geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0)
|
174 |
+
|
175 |
+
sample = {
|
176 |
+
"surface": surface,
|
177 |
+
"geo_points": geo_points
|
178 |
+
}
|
179 |
+
|
180 |
+
return sample
|
181 |
+
|
182 |
+
|
183 |
+
class FeatureSelection(object):
|
184 |
+
|
185 |
+
VALID_SURFACE_FEATURE_DIMS = {
|
186 |
+
"none": [0, 1, 2], # xyz
|
187 |
+
"watertight_normal": [0, 1, 2, 3, 4, 5], # xyz, normal
|
188 |
+
"normal": [0, 1, 2, 6, 7, 8]
|
189 |
+
}
|
190 |
+
|
191 |
+
def __init__(self, surface_feature_type: str):
|
192 |
+
|
193 |
+
self.surface_feature_type = surface_feature_type
|
194 |
+
self.surface_dims = self.VALID_SURFACE_FEATURE_DIMS[surface_feature_type]
|
195 |
+
|
196 |
+
def __call__(self, sample):
|
197 |
+
sample["surface"] = sample["surface"][:, self.surface_dims]
|
198 |
+
return sample
|
199 |
+
|
200 |
+
|
201 |
+
class AxisScaleTransform(object):
|
202 |
+
def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005):
|
203 |
+
assert isinstance(interval, (tuple, list, ListConfig))
|
204 |
+
self.interval = interval
|
205 |
+
self.min_val = interval[0]
|
206 |
+
self.max_val = interval[1]
|
207 |
+
self.inter_size = interval[1] - interval[0]
|
208 |
+
self.jitter = jitter
|
209 |
+
self.jitter_scale = jitter_scale
|
210 |
+
|
211 |
+
def __call__(self, sample):
|
212 |
+
|
213 |
+
surface = sample["surface"][..., 0:3]
|
214 |
+
geo_points = sample["geo_points"][..., 0:3]
|
215 |
+
|
216 |
+
scaling = torch.rand(1, 3) * self.inter_size + self.min_val
|
217 |
+
# print(scaling)
|
218 |
+
surface = surface * scaling
|
219 |
+
geo_points = geo_points * scaling
|
220 |
+
|
221 |
+
scale = (1 / torch.abs(surface).max().item()) * 0.999999
|
222 |
+
surface *= scale
|
223 |
+
geo_points *= scale
|
224 |
+
|
225 |
+
if self.jitter:
|
226 |
+
surface += self.jitter_scale * torch.randn_like(surface)
|
227 |
+
surface.clamp_(min=-1.015, max=1.015)
|
228 |
+
|
229 |
+
sample["surface"][..., 0:3] = surface
|
230 |
+
sample["geo_points"][..., 0:3] = geo_points
|
231 |
+
|
232 |
+
return sample
|
233 |
+
|
234 |
+
|
235 |
+
class ToTensor(object):
|
236 |
+
|
237 |
+
def __init__(self, tensor_keys=("surface", "geo_points", "tex_points")):
|
238 |
+
self.tensor_keys = tensor_keys
|
239 |
+
|
240 |
+
def __call__(self, sample):
|
241 |
+
for key in self.tensor_keys:
|
242 |
+
if key not in sample:
|
243 |
+
continue
|
244 |
+
|
245 |
+
sample[key] = torch.tensor(sample[key], dtype=torch.float32)
|
246 |
+
|
247 |
+
return sample
|
248 |
+
|
249 |
+
|
250 |
+
class AxisScale(object):
|
251 |
+
def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005):
|
252 |
+
assert isinstance(interval, (tuple, list, ListConfig))
|
253 |
+
self.interval = interval
|
254 |
+
self.jitter = jitter
|
255 |
+
self.jitter_scale = jitter_scale
|
256 |
+
|
257 |
+
def __call__(self, surface, *args):
|
258 |
+
scaling = torch.rand(1, 3) * 0.5 + 0.75
|
259 |
+
# print(scaling)
|
260 |
+
surface = surface * scaling
|
261 |
+
scale = (1 / torch.abs(surface).max().item()) * 0.999999
|
262 |
+
surface *= scale
|
263 |
+
|
264 |
+
args_outputs = []
|
265 |
+
for _arg in args:
|
266 |
+
_arg = _arg * scaling * scale
|
267 |
+
args_outputs.append(_arg)
|
268 |
+
|
269 |
+
if self.jitter:
|
270 |
+
surface += self.jitter_scale * torch.randn_like(surface)
|
271 |
+
surface.clamp_(min=-1, max=1)
|
272 |
+
|
273 |
+
if len(args) == 0:
|
274 |
+
return surface
|
275 |
+
else:
|
276 |
+
return surface, *args_outputs
|
277 |
+
|
278 |
+
|
279 |
+
class RandomResize(torch.nn.Module):
|
280 |
+
"""Apply randomly Resize with a given probability."""
|
281 |
+
|
282 |
+
def __init__(
|
283 |
+
self,
|
284 |
+
size,
|
285 |
+
resize_radio=(0.5, 1),
|
286 |
+
allow_resize_interpolations=(InterpolationMode.BICUBIC, InterpolationMode.BILINEAR, InterpolationMode.BILINEAR),
|
287 |
+
interpolation=InterpolationMode.BICUBIC,
|
288 |
+
max_size=None,
|
289 |
+
antialias=None,
|
290 |
+
):
|
291 |
+
super().__init__()
|
292 |
+
if not isinstance(size, (int, Sequence)):
|
293 |
+
raise TypeError(f"Size should be int or sequence. Got {type(size)}")
|
294 |
+
if isinstance(size, Sequence) and len(size) not in (1, 2):
|
295 |
+
raise ValueError("If size is a sequence, it should have 1 or 2 values")
|
296 |
+
|
297 |
+
self.size = size
|
298 |
+
self.max_size = max_size
|
299 |
+
# Backward compatibility with integer value
|
300 |
+
if isinstance(interpolation, int):
|
301 |
+
warnings.warn(
|
302 |
+
"Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
|
303 |
+
"Please use InterpolationMode enum."
|
304 |
+
)
|
305 |
+
interpolation = _interpolation_modes_from_int(interpolation)
|
306 |
+
|
307 |
+
self.interpolation = interpolation
|
308 |
+
self.antialias = antialias
|
309 |
+
|
310 |
+
self.resize_radio = resize_radio
|
311 |
+
self.allow_resize_interpolations = allow_resize_interpolations
|
312 |
+
|
313 |
+
def random_resize_params(self):
|
314 |
+
radio = torch.rand(1) * (self.resize_radio[1] - self.resize_radio[0]) + self.resize_radio[0]
|
315 |
+
|
316 |
+
if isinstance(self.size, int):
|
317 |
+
size = int(self.size * radio)
|
318 |
+
elif isinstance(self.size, Sequence):
|
319 |
+
size = list(self.size)
|
320 |
+
size = (int(size[0] * radio), int(size[1] * radio))
|
321 |
+
else:
|
322 |
+
raise RuntimeError()
|
323 |
+
|
324 |
+
interpolation = self.allow_resize_interpolations[
|
325 |
+
torch.randint(low=0, high=len(self.allow_resize_interpolations), size=(1,))
|
326 |
+
]
|
327 |
+
return size, interpolation
|
328 |
+
|
329 |
+
def forward(self, img):
|
330 |
+
size, interpolation = self.random_resize_params()
|
331 |
+
img = TVF.resize(img, size, interpolation, self.max_size, self.antialias)
|
332 |
+
img = TVF.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
|
333 |
+
return img
|
334 |
+
|
335 |
+
def __repr__(self) -> str:
|
336 |
+
detail = f"(size={self.size}, interpolation={self.interpolation.value},"
|
337 |
+
detail += f"max_size={self.max_size}, antialias={self.antialias}), resize_radio={self.resize_radio}"
|
338 |
+
return f"{self.__class__.__name__}{detail}"
|
339 |
+
|
340 |
+
|
341 |
+
class Compose(object):
|
342 |
+
"""Composes several transforms together. This transform does not support torchscript.
|
343 |
+
Please, see the note below.
|
344 |
+
|
345 |
+
Args:
|
346 |
+
transforms (list of ``Transform`` objects): list of transforms to compose.
|
347 |
+
|
348 |
+
Example:
|
349 |
+
>>> transforms.Compose([
|
350 |
+
>>> transforms.CenterCrop(10),
|
351 |
+
>>> transforms.ToTensor(),
|
352 |
+
>>> ])
|
353 |
+
|
354 |
+
.. note::
|
355 |
+
In order to script the transformations, please use ``torch.nn.Sequential`` as below.
|
356 |
+
|
357 |
+
>>> transforms = torch.nn.Sequential(
|
358 |
+
>>> transforms.CenterCrop(10),
|
359 |
+
>>> transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
360 |
+
>>> )
|
361 |
+
>>> scripted_transforms = torch.jit.script(transforms)
|
362 |
+
|
363 |
+
Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
|
364 |
+
`lambda` functions or ``PIL.Image``.
|
365 |
+
|
366 |
+
"""
|
367 |
+
|
368 |
+
def __init__(self, transforms):
|
369 |
+
self.transforms = transforms
|
370 |
+
|
371 |
+
def __call__(self, *args):
|
372 |
+
for t in self.transforms:
|
373 |
+
args = t(*args)
|
374 |
+
return args
|
375 |
+
|
376 |
+
def __repr__(self):
|
377 |
+
format_string = self.__class__.__name__ + '('
|
378 |
+
for t in self.transforms:
|
379 |
+
format_string += '\n'
|
380 |
+
format_string += ' {0}'.format(t)
|
381 |
+
format_string += '\n)'
|
382 |
+
return format_string
|
383 |
+
|
384 |
+
|
385 |
+
def identity(*args, **kwargs):
|
386 |
+
if len(args) == 1:
|
387 |
+
return args[0]
|
388 |
+
else:
|
389 |
+
return args
|
390 |
+
|
391 |
+
|
392 |
+
def build_transforms(cfg):
|
393 |
+
|
394 |
+
if cfg is None:
|
395 |
+
return identity
|
396 |
+
|
397 |
+
transforms = []
|
398 |
+
|
399 |
+
for transform_name, cfg_instance in cfg.items():
|
400 |
+
transform_instance = instantiate_from_config(cfg_instance)
|
401 |
+
transforms.append(transform_instance)
|
402 |
+
print(f"Build transform: {transform_instance}")
|
403 |
+
|
404 |
+
transforms = Compose(transforms)
|
405 |
+
|
406 |
+
return transforms
|
407 |
+
|
michelangelo/data/utils.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
def worker_init_fn(_):
|
8 |
+
worker_info = torch.utils.data.get_worker_info()
|
9 |
+
worker_id = worker_info.id
|
10 |
+
|
11 |
+
# dataset = worker_info.dataset
|
12 |
+
# split_size = dataset.num_records // worker_info.num_workers
|
13 |
+
# # reset num_records to the true number to retain reliable length information
|
14 |
+
# dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size]
|
15 |
+
# current_id = np.random.choice(len(np.random.get_state()[1]), 1)
|
16 |
+
# return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
|
17 |
+
|
18 |
+
return np.random.seed(np.random.get_state()[1][0] + worker_id)
|
19 |
+
|
20 |
+
|
21 |
+
def collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
22 |
+
"""
|
23 |
+
|
24 |
+
Args:
|
25 |
+
samples (list[dict]):
|
26 |
+
combine_tensors:
|
27 |
+
combine_scalars:
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
|
31 |
+
"""
|
32 |
+
|
33 |
+
result = {}
|
34 |
+
|
35 |
+
keys = samples[0].keys()
|
36 |
+
|
37 |
+
for key in keys:
|
38 |
+
result[key] = []
|
39 |
+
|
40 |
+
for sample in samples:
|
41 |
+
for key in keys:
|
42 |
+
val = sample[key]
|
43 |
+
result[key].append(val)
|
44 |
+
|
45 |
+
for key in keys:
|
46 |
+
val_list = result[key]
|
47 |
+
if isinstance(val_list[0], (int, float)):
|
48 |
+
if combine_scalars:
|
49 |
+
result[key] = np.array(result[key])
|
50 |
+
|
51 |
+
elif isinstance(val_list[0], torch.Tensor):
|
52 |
+
if combine_tensors:
|
53 |
+
result[key] = torch.stack(val_list)
|
54 |
+
|
55 |
+
elif isinstance(val_list[0], np.ndarray):
|
56 |
+
if combine_tensors:
|
57 |
+
result[key] = np.stack(val_list)
|
58 |
+
|
59 |
+
return result
|
michelangelo/graphics/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
michelangelo/graphics/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (185 Bytes). View file
|
|
michelangelo/graphics/primitives/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .volume import generate_dense_grid_points
|
4 |
+
|
5 |
+
from .mesh import (
|
6 |
+
MeshOutput,
|
7 |
+
save_obj,
|
8 |
+
savemeshtes2
|
9 |
+
)
|
michelangelo/graphics/primitives/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (334 Bytes). View file
|
|
michelangelo/graphics/primitives/__pycache__/extract_texture_map.cpython-39.pyc
ADDED
Binary file (2.46 kB). View file
|
|
michelangelo/graphics/primitives/__pycache__/mesh.cpython-39.pyc
ADDED
Binary file (2.93 kB). View file
|
|
michelangelo/graphics/primitives/__pycache__/volume.cpython-39.pyc
ADDED
Binary file (860 Bytes). View file
|
|
michelangelo/graphics/primitives/mesh.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import os
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import PIL.Image
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import trimesh
|
10 |
+
|
11 |
+
|
12 |
+
def save_obj(pointnp_px3, facenp_fx3, fname):
|
13 |
+
fid = open(fname, "w")
|
14 |
+
write_str = ""
|
15 |
+
for pidx, p in enumerate(pointnp_px3):
|
16 |
+
pp = p
|
17 |
+
write_str += "v %f %f %f\n" % (pp[0], pp[1], pp[2])
|
18 |
+
|
19 |
+
for i, f in enumerate(facenp_fx3):
|
20 |
+
f1 = f + 1
|
21 |
+
write_str += "f %d %d %d\n" % (f1[0], f1[1], f1[2])
|
22 |
+
fid.write(write_str)
|
23 |
+
fid.close()
|
24 |
+
return
|
25 |
+
|
26 |
+
|
27 |
+
def savemeshtes2(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, tex_map, fname):
|
28 |
+
fol, na = os.path.split(fname)
|
29 |
+
na, _ = os.path.splitext(na)
|
30 |
+
|
31 |
+
matname = "%s/%s.mtl" % (fol, na)
|
32 |
+
fid = open(matname, "w")
|
33 |
+
fid.write("newmtl material_0\n")
|
34 |
+
fid.write("Kd 1 1 1\n")
|
35 |
+
fid.write("Ka 0 0 0\n")
|
36 |
+
fid.write("Ks 0.4 0.4 0.4\n")
|
37 |
+
fid.write("Ns 10\n")
|
38 |
+
fid.write("illum 2\n")
|
39 |
+
fid.write("map_Kd %s.png\n" % na)
|
40 |
+
fid.close()
|
41 |
+
####
|
42 |
+
|
43 |
+
fid = open(fname, "w")
|
44 |
+
fid.write("mtllib %s.mtl\n" % na)
|
45 |
+
|
46 |
+
for pidx, p in enumerate(pointnp_px3):
|
47 |
+
pp = p
|
48 |
+
fid.write("v %f %f %f\n" % (pp[0], pp[1], pp[2]))
|
49 |
+
|
50 |
+
for pidx, p in enumerate(tcoords_px2):
|
51 |
+
pp = p
|
52 |
+
fid.write("vt %f %f\n" % (pp[0], pp[1]))
|
53 |
+
|
54 |
+
fid.write("usemtl material_0\n")
|
55 |
+
for i, f in enumerate(facenp_fx3):
|
56 |
+
f1 = f + 1
|
57 |
+
f2 = facetex_fx3[i] + 1
|
58 |
+
fid.write("f %d/%d %d/%d %d/%d\n" % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2]))
|
59 |
+
fid.close()
|
60 |
+
|
61 |
+
PIL.Image.fromarray(np.ascontiguousarray(tex_map), "RGB").save(
|
62 |
+
os.path.join(fol, "%s.png" % na))
|
63 |
+
|
64 |
+
return
|
65 |
+
|
66 |
+
|
67 |
+
class MeshOutput(object):
|
68 |
+
|
69 |
+
def __init__(self,
|
70 |
+
mesh_v: np.ndarray,
|
71 |
+
mesh_f: np.ndarray,
|
72 |
+
vertex_colors: Optional[np.ndarray] = None,
|
73 |
+
uvs: Optional[np.ndarray] = None,
|
74 |
+
mesh_tex_idx: Optional[np.ndarray] = None,
|
75 |
+
tex_map: Optional[np.ndarray] = None):
|
76 |
+
|
77 |
+
self.mesh_v = mesh_v
|
78 |
+
self.mesh_f = mesh_f
|
79 |
+
self.vertex_colors = vertex_colors
|
80 |
+
self.uvs = uvs
|
81 |
+
self.mesh_tex_idx = mesh_tex_idx
|
82 |
+
self.tex_map = tex_map
|
83 |
+
|
84 |
+
def contain_uv_texture(self):
|
85 |
+
return (self.uvs is not None) and (self.mesh_tex_idx is not None) and (self.tex_map is not None)
|
86 |
+
|
87 |
+
def contain_vertex_colors(self):
|
88 |
+
return self.vertex_colors is not None
|
89 |
+
|
90 |
+
def export(self, fname):
|
91 |
+
|
92 |
+
if self.contain_uv_texture():
|
93 |
+
savemeshtes2(
|
94 |
+
self.mesh_v,
|
95 |
+
self.uvs,
|
96 |
+
self.mesh_f,
|
97 |
+
self.mesh_tex_idx,
|
98 |
+
self.tex_map,
|
99 |
+
fname
|
100 |
+
)
|
101 |
+
|
102 |
+
elif self.contain_vertex_colors():
|
103 |
+
mesh_obj = trimesh.Trimesh(vertices=self.mesh_v, faces=self.mesh_f, vertex_colors=self.vertex_colors)
|
104 |
+
mesh_obj.export(fname)
|
105 |
+
|
106 |
+
else:
|
107 |
+
save_obj(
|
108 |
+
self.mesh_v,
|
109 |
+
self.mesh_f,
|
110 |
+
fname
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
+
|
michelangelo/graphics/primitives/volume.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
def generate_dense_grid_points(bbox_min: np.ndarray,
|
7 |
+
bbox_max: np.ndarray,
|
8 |
+
octree_depth: int,
|
9 |
+
indexing: str = "ij"):
|
10 |
+
length = bbox_max - bbox_min
|
11 |
+
num_cells = np.exp2(octree_depth)
|
12 |
+
x = np.linspace(bbox_min[0], bbox_max[0], int(num_cells) + 1, dtype=np.float32)
|
13 |
+
y = np.linspace(bbox_min[1], bbox_max[1], int(num_cells) + 1, dtype=np.float32)
|
14 |
+
z = np.linspace(bbox_min[2], bbox_max[2], int(num_cells) + 1, dtype=np.float32)
|
15 |
+
[xs, ys, zs] = np.meshgrid(x, y, z, indexing=indexing)
|
16 |
+
xyz = np.stack((xs, ys, zs), axis=-1)
|
17 |
+
xyz = xyz.reshape(-1, 3)
|
18 |
+
grid_size = [int(num_cells) + 1, int(num_cells) + 1, int(num_cells) + 1]
|
19 |
+
|
20 |
+
return xyz, grid_size, length
|
21 |
+
|
michelangelo/models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
michelangelo/models/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (183 Bytes). View file
|
|
michelangelo/models/asl_diffusion/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
michelangelo/models/asl_diffusion/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (197 Bytes). View file
|
|
michelangelo/models/asl_diffusion/__pycache__/asl_udt.cpython-39.pyc
ADDED
Binary file (2.64 kB). View file
|
|
michelangelo/models/asl_diffusion/__pycache__/clip_asl_diffuser_pl_module.cpython-39.pyc
ADDED
Binary file (9.87 kB). View file
|
|
michelangelo/models/asl_diffusion/__pycache__/inference_utils.cpython-39.pyc
ADDED
Binary file (1.75 kB). View file
|
|
michelangelo/models/asl_diffusion/asl_diffuser_pl_module.py
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from omegaconf import DictConfig
|
4 |
+
from typing import List, Tuple, Dict, Optional, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.optim import lr_scheduler
|
10 |
+
import pytorch_lightning as pl
|
11 |
+
from pytorch_lightning.utilities import rank_zero_only
|
12 |
+
|
13 |
+
from einops import rearrange
|
14 |
+
|
15 |
+
from diffusers.schedulers import (
|
16 |
+
DDPMScheduler,
|
17 |
+
DDIMScheduler,
|
18 |
+
KarrasVeScheduler,
|
19 |
+
DPMSolverMultistepScheduler
|
20 |
+
)
|
21 |
+
|
22 |
+
from michelangelo.utils import instantiate_from_config
|
23 |
+
# from michelangelo.models.tsal.tsal_base import ShapeAsLatentPLModule
|
24 |
+
from michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentPLModule
|
25 |
+
from michelangelo.models.asl_diffusion.inference_utils import ddim_sample
|
26 |
+
|
27 |
+
SchedulerType = Union[DDIMScheduler, KarrasVeScheduler, DPMSolverMultistepScheduler]
|
28 |
+
|
29 |
+
|
30 |
+
def disabled_train(self, mode=True):
|
31 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
32 |
+
does not change anymore."""
|
33 |
+
return self
|
34 |
+
|
35 |
+
|
36 |
+
class ASLDiffuser(pl.LightningModule):
|
37 |
+
first_stage_model: Optional[AlignedShapeAsLatentPLModule]
|
38 |
+
# cond_stage_model: Optional[Union[nn.Module, pl.LightningModule]]
|
39 |
+
model: nn.Module
|
40 |
+
|
41 |
+
def __init__(self, *,
|
42 |
+
first_stage_config,
|
43 |
+
denoiser_cfg,
|
44 |
+
scheduler_cfg,
|
45 |
+
optimizer_cfg,
|
46 |
+
loss_cfg,
|
47 |
+
first_stage_key: str = "surface",
|
48 |
+
cond_stage_key: str = "image",
|
49 |
+
cond_stage_trainable: bool = True,
|
50 |
+
scale_by_std: bool = False,
|
51 |
+
z_scale_factor: float = 1.0,
|
52 |
+
ckpt_path: Optional[str] = None,
|
53 |
+
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
54 |
+
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
self.first_stage_key = first_stage_key
|
58 |
+
self.cond_stage_key = cond_stage_key
|
59 |
+
self.cond_stage_trainable = cond_stage_trainable
|
60 |
+
|
61 |
+
# 1. initialize first stage.
|
62 |
+
# Note: the condition model contained in the first stage model.
|
63 |
+
self.first_stage_config = first_stage_config
|
64 |
+
self.first_stage_model = None
|
65 |
+
# self.instantiate_first_stage(first_stage_config)
|
66 |
+
|
67 |
+
# 2. initialize conditional stage
|
68 |
+
# self.instantiate_cond_stage(cond_stage_config)
|
69 |
+
self.cond_stage_model = {
|
70 |
+
"image": self.encode_image,
|
71 |
+
"image_unconditional_embedding": self.empty_img_cond,
|
72 |
+
"text": self.encode_text,
|
73 |
+
"text_unconditional_embedding": self.empty_text_cond,
|
74 |
+
"surface": self.encode_surface,
|
75 |
+
"surface_unconditional_embedding": self.empty_surface_cond,
|
76 |
+
}
|
77 |
+
|
78 |
+
# 3. diffusion model
|
79 |
+
self.model = instantiate_from_config(
|
80 |
+
denoiser_cfg, device=None, dtype=None
|
81 |
+
)
|
82 |
+
|
83 |
+
self.optimizer_cfg = optimizer_cfg
|
84 |
+
|
85 |
+
# 4. scheduling strategy
|
86 |
+
self.scheduler_cfg = scheduler_cfg
|
87 |
+
|
88 |
+
self.noise_scheduler: DDPMScheduler = instantiate_from_config(scheduler_cfg.noise)
|
89 |
+
self.denoise_scheduler: SchedulerType = instantiate_from_config(scheduler_cfg.denoise)
|
90 |
+
|
91 |
+
# 5. loss configures
|
92 |
+
self.loss_cfg = loss_cfg
|
93 |
+
|
94 |
+
self.scale_by_std = scale_by_std
|
95 |
+
if scale_by_std:
|
96 |
+
self.register_buffer("z_scale_factor", torch.tensor(z_scale_factor))
|
97 |
+
else:
|
98 |
+
self.z_scale_factor = z_scale_factor
|
99 |
+
|
100 |
+
self.ckpt_path = ckpt_path
|
101 |
+
if ckpt_path is not None:
|
102 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
103 |
+
|
104 |
+
def instantiate_first_stage(self, config):
|
105 |
+
model = instantiate_from_config(config)
|
106 |
+
self.first_stage_model = model.eval()
|
107 |
+
self.first_stage_model.train = disabled_train
|
108 |
+
for param in self.first_stage_model.parameters():
|
109 |
+
param.requires_grad = False
|
110 |
+
|
111 |
+
self.first_stage_model = self.first_stage_model.to(self.device)
|
112 |
+
|
113 |
+
# def instantiate_cond_stage(self, config):
|
114 |
+
# if not self.cond_stage_trainable:
|
115 |
+
# if config == "__is_first_stage__":
|
116 |
+
# print("Using first stage also as cond stage.")
|
117 |
+
# self.cond_stage_model = self.first_stage_model
|
118 |
+
# elif config == "__is_unconditional__":
|
119 |
+
# print(f"Training {self.__class__.__name__} as an unconditional model.")
|
120 |
+
# self.cond_stage_model = None
|
121 |
+
# # self.be_unconditional = True
|
122 |
+
# else:
|
123 |
+
# model = instantiate_from_config(config)
|
124 |
+
# self.cond_stage_model = model.eval()
|
125 |
+
# self.cond_stage_model.train = disabled_train
|
126 |
+
# for param in self.cond_stage_model.parameters():
|
127 |
+
# param.requires_grad = False
|
128 |
+
# else:
|
129 |
+
# assert config != "__is_first_stage__"
|
130 |
+
# assert config != "__is_unconditional__"
|
131 |
+
# model = instantiate_from_config(config)
|
132 |
+
# self.cond_stage_model = model
|
133 |
+
|
134 |
+
def init_from_ckpt(self, path, ignore_keys=()):
|
135 |
+
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
136 |
+
|
137 |
+
keys = list(state_dict.keys())
|
138 |
+
for k in keys:
|
139 |
+
for ik in ignore_keys:
|
140 |
+
if k.startswith(ik):
|
141 |
+
print("Deleting key {} from state_dict.".format(k))
|
142 |
+
del state_dict[k]
|
143 |
+
|
144 |
+
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
145 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
146 |
+
if len(missing) > 0:
|
147 |
+
print(f"Missing Keys: {missing}")
|
148 |
+
print(f"Unexpected Keys: {unexpected}")
|
149 |
+
|
150 |
+
@property
|
151 |
+
def zero_rank(self):
|
152 |
+
if self._trainer:
|
153 |
+
zero_rank = self.trainer.local_rank == 0
|
154 |
+
else:
|
155 |
+
zero_rank = True
|
156 |
+
|
157 |
+
return zero_rank
|
158 |
+
|
159 |
+
def configure_optimizers(self) -> Tuple[List, List]:
|
160 |
+
|
161 |
+
lr = self.learning_rate
|
162 |
+
|
163 |
+
trainable_parameters = list(self.model.parameters())
|
164 |
+
# if the conditional encoder is trainable
|
165 |
+
|
166 |
+
# if self.cond_stage_trainable:
|
167 |
+
# conditioner_params = [p for p in self.cond_stage_model.parameters() if p.requires_grad]
|
168 |
+
# trainable_parameters += conditioner_params
|
169 |
+
# print(f"number of trainable conditional parameters: {len(conditioner_params)}.")
|
170 |
+
|
171 |
+
if self.optimizer_cfg is None:
|
172 |
+
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
173 |
+
schedulers = []
|
174 |
+
else:
|
175 |
+
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
|
176 |
+
scheduler_func = instantiate_from_config(
|
177 |
+
self.optimizer_cfg.scheduler,
|
178 |
+
max_decay_steps=self.trainer.max_steps,
|
179 |
+
lr_max=lr
|
180 |
+
)
|
181 |
+
scheduler = {
|
182 |
+
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
183 |
+
"interval": "step",
|
184 |
+
"frequency": 1
|
185 |
+
}
|
186 |
+
optimizers = [optimizer]
|
187 |
+
schedulers = [scheduler]
|
188 |
+
|
189 |
+
return optimizers, schedulers
|
190 |
+
|
191 |
+
@torch.no_grad()
|
192 |
+
def encode_text(self, text):
|
193 |
+
|
194 |
+
b = text.shape[0]
|
195 |
+
text_tokens = rearrange(text, "b t l -> (b t) l")
|
196 |
+
text_embed = self.first_stage_model.model.encode_text_embed(text_tokens)
|
197 |
+
text_embed = rearrange(text_embed, "(b t) d -> b t d", b=b)
|
198 |
+
text_embed = text_embed.mean(dim=1)
|
199 |
+
text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
|
200 |
+
|
201 |
+
return text_embed
|
202 |
+
|
203 |
+
@torch.no_grad()
|
204 |
+
def encode_image(self, img):
|
205 |
+
|
206 |
+
return self.first_stage_model.model.encode_image_embed(img)
|
207 |
+
|
208 |
+
@torch.no_grad()
|
209 |
+
def encode_surface(self, surface):
|
210 |
+
|
211 |
+
return self.first_stage_model.model.encode_shape_embed(surface, return_latents=False)
|
212 |
+
|
213 |
+
@torch.no_grad()
|
214 |
+
def empty_text_cond(self, cond):
|
215 |
+
|
216 |
+
return torch.zeros_like(cond, device=cond.device)
|
217 |
+
|
218 |
+
@torch.no_grad()
|
219 |
+
def empty_img_cond(self, cond):
|
220 |
+
|
221 |
+
return torch.zeros_like(cond, device=cond.device)
|
222 |
+
|
223 |
+
@torch.no_grad()
|
224 |
+
def empty_surface_cond(self, cond):
|
225 |
+
|
226 |
+
return torch.zeros_like(cond, device=cond.device)
|
227 |
+
|
228 |
+
@torch.no_grad()
|
229 |
+
def encode_first_stage(self, surface: torch.FloatTensor, sample_posterior=True):
|
230 |
+
|
231 |
+
z_q = self.first_stage_model.encode(surface, sample_posterior)
|
232 |
+
z_q = self.z_scale_factor * z_q
|
233 |
+
|
234 |
+
return z_q
|
235 |
+
|
236 |
+
@torch.no_grad()
|
237 |
+
def decode_first_stage(self, z_q: torch.FloatTensor, **kwargs):
|
238 |
+
|
239 |
+
z_q = 1. / self.z_scale_factor * z_q
|
240 |
+
latents = self.first_stage_model.decode(z_q, **kwargs)
|
241 |
+
return latents
|
242 |
+
|
243 |
+
@rank_zero_only
|
244 |
+
@torch.no_grad()
|
245 |
+
def on_train_batch_start(self, batch, batch_idx):
|
246 |
+
# only for very first batch
|
247 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 \
|
248 |
+
and batch_idx == 0 and self.ckpt_path is None:
|
249 |
+
# set rescale weight to 1./std of encodings
|
250 |
+
print("### USING STD-RESCALING ###")
|
251 |
+
|
252 |
+
z_q = self.encode_first_stage(batch[self.first_stage_key])
|
253 |
+
z = z_q.detach()
|
254 |
+
|
255 |
+
del self.z_scale_factor
|
256 |
+
self.register_buffer("z_scale_factor", 1. / z.flatten().std())
|
257 |
+
print(f"setting self.z_scale_factor to {self.z_scale_factor}")
|
258 |
+
|
259 |
+
print("### USING STD-RESCALING ###")
|
260 |
+
|
261 |
+
def compute_loss(self, model_outputs, split):
|
262 |
+
"""
|
263 |
+
|
264 |
+
Args:
|
265 |
+
model_outputs (dict):
|
266 |
+
- x_0:
|
267 |
+
- noise:
|
268 |
+
- noise_prior:
|
269 |
+
- noise_pred:
|
270 |
+
- noise_pred_prior:
|
271 |
+
|
272 |
+
split (str):
|
273 |
+
|
274 |
+
Returns:
|
275 |
+
|
276 |
+
"""
|
277 |
+
|
278 |
+
pred = model_outputs["pred"]
|
279 |
+
|
280 |
+
if self.noise_scheduler.prediction_type == "epsilon":
|
281 |
+
target = model_outputs["noise"]
|
282 |
+
elif self.noise_scheduler.prediction_type == "sample":
|
283 |
+
target = model_outputs["x_0"]
|
284 |
+
else:
|
285 |
+
raise NotImplementedError(f"Prediction Type: {self.noise_scheduler.prediction_type} not yet supported.")
|
286 |
+
|
287 |
+
if self.loss_cfg.loss_type == "l1":
|
288 |
+
simple = F.l1_loss(pred, target, reduction="mean")
|
289 |
+
elif self.loss_cfg.loss_type in ["mse", "l2"]:
|
290 |
+
simple = F.mse_loss(pred, target, reduction="mean")
|
291 |
+
else:
|
292 |
+
raise NotImplementedError(f"Loss Type: {self.loss_cfg.loss_type} not yet supported.")
|
293 |
+
|
294 |
+
total_loss = simple
|
295 |
+
|
296 |
+
loss_dict = {
|
297 |
+
f"{split}/total_loss": total_loss.clone().detach(),
|
298 |
+
f"{split}/simple": simple.detach(),
|
299 |
+
}
|
300 |
+
|
301 |
+
return total_loss, loss_dict
|
302 |
+
|
303 |
+
def forward(self, batch):
|
304 |
+
"""
|
305 |
+
|
306 |
+
Args:
|
307 |
+
batch:
|
308 |
+
|
309 |
+
Returns:
|
310 |
+
|
311 |
+
"""
|
312 |
+
|
313 |
+
if self.first_stage_model is None:
|
314 |
+
self.instantiate_first_stage(self.first_stage_config)
|
315 |
+
|
316 |
+
latents = self.encode_first_stage(batch[self.first_stage_key])
|
317 |
+
|
318 |
+
# conditions = self.cond_stage_model.encode(batch[self.cond_stage_key])
|
319 |
+
|
320 |
+
conditions = self.cond_stage_model[self.cond_stage_key](batch[self.cond_stage_key]).unsqueeze(1)
|
321 |
+
|
322 |
+
mask = torch.rand((len(conditions), 1, 1), device=conditions.device, dtype=conditions.dtype) >= 0.1
|
323 |
+
conditions = conditions * mask.to(conditions)
|
324 |
+
|
325 |
+
# Sample noise that we"ll add to the latents
|
326 |
+
# [batch_size, n_token, latent_dim]
|
327 |
+
noise = torch.randn_like(latents)
|
328 |
+
bs = latents.shape[0]
|
329 |
+
# Sample a random timestep for each motion
|
330 |
+
timesteps = torch.randint(
|
331 |
+
0,
|
332 |
+
self.noise_scheduler.config.num_train_timesteps,
|
333 |
+
(bs,),
|
334 |
+
device=latents.device,
|
335 |
+
)
|
336 |
+
timesteps = timesteps.long()
|
337 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
338 |
+
noisy_z = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
339 |
+
|
340 |
+
# diffusion model forward
|
341 |
+
noise_pred = self.model(noisy_z, timesteps, conditions)
|
342 |
+
|
343 |
+
diffusion_outputs = {
|
344 |
+
"x_0": noisy_z,
|
345 |
+
"noise": noise,
|
346 |
+
"pred": noise_pred
|
347 |
+
}
|
348 |
+
|
349 |
+
return diffusion_outputs
|
350 |
+
|
351 |
+
def training_step(self, batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
352 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
353 |
+
"""
|
354 |
+
|
355 |
+
Args:
|
356 |
+
batch (dict): the batch sample, and it contains:
|
357 |
+
- surface (torch.FloatTensor):
|
358 |
+
- image (torch.FloatTensor): if provide, [bs, 3, h, w], item range [0, 1]
|
359 |
+
- depth (torch.FloatTensor): if provide, [bs, 1, h, w], item range [-1, 1]
|
360 |
+
- normal (torch.FloatTensor): if provide, [bs, 3, h, w], item range [-1, 1]
|
361 |
+
- text (list of str):
|
362 |
+
|
363 |
+
batch_idx (int):
|
364 |
+
|
365 |
+
optimizer_idx (int):
|
366 |
+
|
367 |
+
Returns:
|
368 |
+
loss (torch.FloatTensor):
|
369 |
+
|
370 |
+
"""
|
371 |
+
|
372 |
+
diffusion_outputs = self(batch)
|
373 |
+
|
374 |
+
loss, loss_dict = self.compute_loss(diffusion_outputs, "train")
|
375 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
376 |
+
|
377 |
+
return loss
|
378 |
+
|
379 |
+
def validation_step(self, batch: Dict[str, torch.FloatTensor],
|
380 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
381 |
+
"""
|
382 |
+
|
383 |
+
Args:
|
384 |
+
batch (dict): the batch sample, and it contains:
|
385 |
+
- surface_pc (torch.FloatTensor): [n_pts, 4]
|
386 |
+
- surface_feats (torch.FloatTensor): [n_pts, c]
|
387 |
+
- text (list of str):
|
388 |
+
|
389 |
+
batch_idx (int):
|
390 |
+
|
391 |
+
optimizer_idx (int):
|
392 |
+
|
393 |
+
Returns:
|
394 |
+
loss (torch.FloatTensor):
|
395 |
+
|
396 |
+
"""
|
397 |
+
|
398 |
+
diffusion_outputs = self(batch)
|
399 |
+
|
400 |
+
loss, loss_dict = self.compute_loss(diffusion_outputs, "val")
|
401 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
402 |
+
|
403 |
+
return loss
|
404 |
+
|
405 |
+
@torch.no_grad()
|
406 |
+
def sample(self,
|
407 |
+
batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
408 |
+
sample_times: int = 1,
|
409 |
+
steps: Optional[int] = None,
|
410 |
+
guidance_scale: Optional[float] = None,
|
411 |
+
eta: float = 0.0,
|
412 |
+
return_intermediates: bool = False, **kwargs):
|
413 |
+
|
414 |
+
if self.first_stage_model is None:
|
415 |
+
self.instantiate_first_stage(self.first_stage_config)
|
416 |
+
|
417 |
+
if steps is None:
|
418 |
+
steps = self.scheduler_cfg.num_inference_steps
|
419 |
+
|
420 |
+
if guidance_scale is None:
|
421 |
+
guidance_scale = self.scheduler_cfg.guidance_scale
|
422 |
+
do_classifier_free_guidance = guidance_scale > 0
|
423 |
+
|
424 |
+
# conditional encode
|
425 |
+
xc = batch[self.cond_stage_key]
|
426 |
+
# cond = self.cond_stage_model[self.cond_stage_key](xc)
|
427 |
+
cond = self.cond_stage_model[self.cond_stage_key](xc).unsqueeze(1)
|
428 |
+
|
429 |
+
if do_classifier_free_guidance:
|
430 |
+
"""
|
431 |
+
Note: There are two kinds of uncond for text.
|
432 |
+
1: using "" as uncond text; (in SAL diffusion)
|
433 |
+
2: zeros_like(cond) as uncond text; (in MDM)
|
434 |
+
"""
|
435 |
+
# un_cond = self.cond_stage_model.unconditional_embedding(batch_size=len(xc))
|
436 |
+
un_cond = self.cond_stage_model[f"{self.cond_stage_key}_unconditional_embedding"](cond)
|
437 |
+
# un_cond = torch.zeros_like(cond, device=cond.device)
|
438 |
+
cond = torch.cat([un_cond, cond], dim=0)
|
439 |
+
|
440 |
+
outputs = []
|
441 |
+
latents = None
|
442 |
+
|
443 |
+
if not return_intermediates:
|
444 |
+
for _ in range(sample_times):
|
445 |
+
sample_loop = ddim_sample(
|
446 |
+
self.denoise_scheduler,
|
447 |
+
self.model,
|
448 |
+
shape=self.first_stage_model.latent_shape,
|
449 |
+
cond=cond,
|
450 |
+
steps=steps,
|
451 |
+
guidance_scale=guidance_scale,
|
452 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
453 |
+
device=self.device,
|
454 |
+
eta=eta,
|
455 |
+
disable_prog=not self.zero_rank
|
456 |
+
)
|
457 |
+
for sample, t in sample_loop:
|
458 |
+
latents = sample
|
459 |
+
outputs.append(self.decode_first_stage(latents, **kwargs))
|
460 |
+
else:
|
461 |
+
|
462 |
+
sample_loop = ddim_sample(
|
463 |
+
self.denoise_scheduler,
|
464 |
+
self.model,
|
465 |
+
shape=self.first_stage_model.latent_shape,
|
466 |
+
cond=cond,
|
467 |
+
steps=steps,
|
468 |
+
guidance_scale=guidance_scale,
|
469 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
470 |
+
device=self.device,
|
471 |
+
eta=eta,
|
472 |
+
disable_prog=not self.zero_rank
|
473 |
+
)
|
474 |
+
|
475 |
+
iter_size = steps // sample_times
|
476 |
+
i = 0
|
477 |
+
for sample, t in sample_loop:
|
478 |
+
latents = sample
|
479 |
+
if i % iter_size == 0 or i == steps - 1:
|
480 |
+
outputs.append(self.decode_first_stage(latents, **kwargs))
|
481 |
+
i += 1
|
482 |
+
|
483 |
+
return outputs
|
michelangelo/models/asl_diffusion/asl_udt.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from typing import Optional
|
6 |
+
from diffusers.models.embeddings import Timesteps
|
7 |
+
import math
|
8 |
+
|
9 |
+
from michelangelo.models.modules.transformer_blocks import MLP
|
10 |
+
from michelangelo.models.modules.diffusion_transformer import UNetDiffusionTransformer
|
11 |
+
|
12 |
+
|
13 |
+
class ConditionalASLUDTDenoiser(nn.Module):
|
14 |
+
|
15 |
+
def __init__(self, *,
|
16 |
+
device: Optional[torch.device],
|
17 |
+
dtype: Optional[torch.dtype],
|
18 |
+
input_channels: int,
|
19 |
+
output_channels: int,
|
20 |
+
n_ctx: int,
|
21 |
+
width: int,
|
22 |
+
layers: int,
|
23 |
+
heads: int,
|
24 |
+
context_dim: int,
|
25 |
+
context_ln: bool = True,
|
26 |
+
skip_ln: bool = False,
|
27 |
+
init_scale: float = 0.25,
|
28 |
+
flip_sin_to_cos: bool = False,
|
29 |
+
use_checkpoint: bool = False):
|
30 |
+
super().__init__()
|
31 |
+
|
32 |
+
self.use_checkpoint = use_checkpoint
|
33 |
+
|
34 |
+
init_scale = init_scale * math.sqrt(1.0 / width)
|
35 |
+
|
36 |
+
self.backbone = UNetDiffusionTransformer(
|
37 |
+
device=device,
|
38 |
+
dtype=dtype,
|
39 |
+
n_ctx=n_ctx,
|
40 |
+
width=width,
|
41 |
+
layers=layers,
|
42 |
+
heads=heads,
|
43 |
+
skip_ln=skip_ln,
|
44 |
+
init_scale=init_scale,
|
45 |
+
use_checkpoint=use_checkpoint
|
46 |
+
)
|
47 |
+
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
|
48 |
+
self.input_proj = nn.Linear(input_channels, width, device=device, dtype=dtype)
|
49 |
+
self.output_proj = nn.Linear(width, output_channels, device=device, dtype=dtype)
|
50 |
+
|
51 |
+
# timestep embedding
|
52 |
+
self.time_embed = Timesteps(width, flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=0)
|
53 |
+
self.time_proj = MLP(
|
54 |
+
device=device, dtype=dtype, width=width, init_scale=init_scale
|
55 |
+
)
|
56 |
+
|
57 |
+
self.context_embed = nn.Sequential(
|
58 |
+
nn.LayerNorm(context_dim, device=device, dtype=dtype),
|
59 |
+
nn.Linear(context_dim, width, device=device, dtype=dtype),
|
60 |
+
)
|
61 |
+
|
62 |
+
if context_ln:
|
63 |
+
self.context_embed = nn.Sequential(
|
64 |
+
nn.LayerNorm(context_dim, device=device, dtype=dtype),
|
65 |
+
nn.Linear(context_dim, width, device=device, dtype=dtype),
|
66 |
+
)
|
67 |
+
else:
|
68 |
+
self.context_embed = nn.Linear(context_dim, width, device=device, dtype=dtype)
|
69 |
+
|
70 |
+
def forward(self,
|
71 |
+
model_input: torch.FloatTensor,
|
72 |
+
timestep: torch.LongTensor,
|
73 |
+
context: torch.FloatTensor):
|
74 |
+
|
75 |
+
r"""
|
76 |
+
Args:
|
77 |
+
model_input (torch.FloatTensor): [bs, n_data, c]
|
78 |
+
timestep (torch.LongTensor): [bs,]
|
79 |
+
context (torch.FloatTensor): [bs, context_tokens, c]
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
sample (torch.FloatTensor): [bs, n_data, c]
|
83 |
+
|
84 |
+
"""
|
85 |
+
|
86 |
+
_, n_data, _ = model_input.shape
|
87 |
+
|
88 |
+
# 1. time
|
89 |
+
t_emb = self.time_proj(self.time_embed(timestep)).unsqueeze(dim=1)
|
90 |
+
|
91 |
+
# 2. conditions projector
|
92 |
+
context = self.context_embed(context)
|
93 |
+
|
94 |
+
# 3. denoiser
|
95 |
+
x = self.input_proj(model_input)
|
96 |
+
x = torch.cat([t_emb, context, x], dim=1)
|
97 |
+
x = self.backbone(x)
|
98 |
+
x = self.ln_post(x)
|
99 |
+
x = x[:, -n_data:]
|
100 |
+
sample = self.output_proj(x)
|
101 |
+
|
102 |
+
return sample
|
103 |
+
|
104 |
+
|
michelangelo/models/asl_diffusion/base.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class BaseDenoiser(nn.Module):
|
8 |
+
|
9 |
+
def __init__(self):
|
10 |
+
super().__init__()
|
11 |
+
|
12 |
+
def forward(self, x, t, context):
|
13 |
+
raise NotImplementedError
|
michelangelo/models/asl_diffusion/clip_asl_diffuser_pl_module.py
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from omegaconf import DictConfig
|
4 |
+
from typing import List, Tuple, Dict, Optional, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.optim import lr_scheduler
|
10 |
+
import pytorch_lightning as pl
|
11 |
+
from pytorch_lightning.utilities import rank_zero_only
|
12 |
+
|
13 |
+
from diffusers.schedulers import (
|
14 |
+
DDPMScheduler,
|
15 |
+
DDIMScheduler,
|
16 |
+
KarrasVeScheduler,
|
17 |
+
DPMSolverMultistepScheduler
|
18 |
+
)
|
19 |
+
|
20 |
+
from michelangelo.utils import instantiate_from_config
|
21 |
+
from michelangelo.models.tsal.tsal_base import AlignedShapeAsLatentPLModule
|
22 |
+
from michelangelo.models.asl_diffusion.inference_utils import ddim_sample
|
23 |
+
|
24 |
+
SchedulerType = Union[DDIMScheduler, KarrasVeScheduler, DPMSolverMultistepScheduler]
|
25 |
+
|
26 |
+
|
27 |
+
def disabled_train(self, mode=True):
|
28 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
29 |
+
does not change anymore."""
|
30 |
+
return self
|
31 |
+
|
32 |
+
|
33 |
+
class ClipASLDiffuser(pl.LightningModule):
|
34 |
+
first_stage_model: Optional[AlignedShapeAsLatentPLModule]
|
35 |
+
cond_stage_model: Optional[Union[nn.Module, pl.LightningModule]]
|
36 |
+
model: nn.Module
|
37 |
+
|
38 |
+
def __init__(self, *,
|
39 |
+
first_stage_config,
|
40 |
+
cond_stage_config,
|
41 |
+
denoiser_cfg,
|
42 |
+
scheduler_cfg,
|
43 |
+
optimizer_cfg,
|
44 |
+
loss_cfg,
|
45 |
+
first_stage_key: str = "surface",
|
46 |
+
cond_stage_key: str = "image",
|
47 |
+
scale_by_std: bool = False,
|
48 |
+
z_scale_factor: float = 1.0,
|
49 |
+
ckpt_path: Optional[str] = None,
|
50 |
+
ignore_keys: Union[Tuple[str], List[str]] = ()):
|
51 |
+
|
52 |
+
super().__init__()
|
53 |
+
|
54 |
+
self.first_stage_key = first_stage_key
|
55 |
+
self.cond_stage_key = cond_stage_key
|
56 |
+
|
57 |
+
# 1. lazy initialize first stage
|
58 |
+
self.instantiate_first_stage(first_stage_config)
|
59 |
+
|
60 |
+
# 2. initialize conditional stage
|
61 |
+
self.instantiate_cond_stage(cond_stage_config)
|
62 |
+
|
63 |
+
# 3. diffusion model
|
64 |
+
self.model = instantiate_from_config(
|
65 |
+
denoiser_cfg, device=None, dtype=None
|
66 |
+
)
|
67 |
+
|
68 |
+
self.optimizer_cfg = optimizer_cfg
|
69 |
+
|
70 |
+
# 4. scheduling strategy
|
71 |
+
self.scheduler_cfg = scheduler_cfg
|
72 |
+
|
73 |
+
self.noise_scheduler: DDPMScheduler = instantiate_from_config(scheduler_cfg.noise)
|
74 |
+
self.denoise_scheduler: SchedulerType = instantiate_from_config(scheduler_cfg.denoise)
|
75 |
+
|
76 |
+
# 5. loss configures
|
77 |
+
self.loss_cfg = loss_cfg
|
78 |
+
|
79 |
+
self.scale_by_std = scale_by_std
|
80 |
+
if scale_by_std:
|
81 |
+
self.register_buffer("z_scale_factor", torch.tensor(z_scale_factor))
|
82 |
+
else:
|
83 |
+
self.z_scale_factor = z_scale_factor
|
84 |
+
|
85 |
+
self.ckpt_path = ckpt_path
|
86 |
+
if ckpt_path is not None:
|
87 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
88 |
+
|
89 |
+
def instantiate_non_trainable_model(self, config):
|
90 |
+
model = instantiate_from_config(config)
|
91 |
+
model = model.eval()
|
92 |
+
model.train = disabled_train
|
93 |
+
for param in model.parameters():
|
94 |
+
param.requires_grad = False
|
95 |
+
|
96 |
+
return model
|
97 |
+
|
98 |
+
def instantiate_first_stage(self, first_stage_config):
|
99 |
+
self.first_stage_model = self.instantiate_non_trainable_model(first_stage_config)
|
100 |
+
self.first_stage_model.set_shape_model_only()
|
101 |
+
|
102 |
+
def instantiate_cond_stage(self, cond_stage_config):
|
103 |
+
self.cond_stage_model = self.instantiate_non_trainable_model(cond_stage_config)
|
104 |
+
|
105 |
+
def init_from_ckpt(self, path, ignore_keys=()):
|
106 |
+
state_dict = torch.load(path, map_location="cpu")["state_dict"]
|
107 |
+
|
108 |
+
keys = list(state_dict.keys())
|
109 |
+
for k in keys:
|
110 |
+
for ik in ignore_keys:
|
111 |
+
if k.startswith(ik):
|
112 |
+
print("Deleting key {} from state_dict.".format(k))
|
113 |
+
del state_dict[k]
|
114 |
+
|
115 |
+
missing, unexpected = self.load_state_dict(state_dict, strict=False)
|
116 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
117 |
+
if len(missing) > 0:
|
118 |
+
print(f"Missing Keys: {missing}")
|
119 |
+
print(f"Unexpected Keys: {unexpected}")
|
120 |
+
|
121 |
+
@property
|
122 |
+
def zero_rank(self):
|
123 |
+
if self._trainer:
|
124 |
+
zero_rank = self.trainer.local_rank == 0
|
125 |
+
else:
|
126 |
+
zero_rank = True
|
127 |
+
|
128 |
+
return zero_rank
|
129 |
+
|
130 |
+
def configure_optimizers(self) -> Tuple[List, List]:
|
131 |
+
|
132 |
+
lr = self.learning_rate
|
133 |
+
|
134 |
+
trainable_parameters = list(self.model.parameters())
|
135 |
+
if self.optimizer_cfg is None:
|
136 |
+
optimizers = [torch.optim.AdamW(trainable_parameters, lr=lr, betas=(0.9, 0.99), weight_decay=1e-3)]
|
137 |
+
schedulers = []
|
138 |
+
else:
|
139 |
+
optimizer = instantiate_from_config(self.optimizer_cfg.optimizer, params=trainable_parameters)
|
140 |
+
scheduler_func = instantiate_from_config(
|
141 |
+
self.optimizer_cfg.scheduler,
|
142 |
+
max_decay_steps=self.trainer.max_steps,
|
143 |
+
lr_max=lr
|
144 |
+
)
|
145 |
+
scheduler = {
|
146 |
+
"scheduler": lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler_func.schedule),
|
147 |
+
"interval": "step",
|
148 |
+
"frequency": 1
|
149 |
+
}
|
150 |
+
optimizers = [optimizer]
|
151 |
+
schedulers = [scheduler]
|
152 |
+
|
153 |
+
return optimizers, schedulers
|
154 |
+
|
155 |
+
@torch.no_grad()
|
156 |
+
def encode_first_stage(self, surface: torch.FloatTensor, sample_posterior=True):
|
157 |
+
|
158 |
+
z_q = self.first_stage_model.encode(surface, sample_posterior)
|
159 |
+
z_q = self.z_scale_factor * z_q
|
160 |
+
|
161 |
+
return z_q
|
162 |
+
|
163 |
+
@torch.no_grad()
|
164 |
+
def decode_first_stage(self, z_q: torch.FloatTensor, **kwargs):
|
165 |
+
|
166 |
+
z_q = 1. / self.z_scale_factor * z_q
|
167 |
+
latents = self.first_stage_model.decode(z_q, **kwargs)
|
168 |
+
return latents
|
169 |
+
|
170 |
+
@rank_zero_only
|
171 |
+
@torch.no_grad()
|
172 |
+
def on_train_batch_start(self, batch, batch_idx):
|
173 |
+
# only for very first batch
|
174 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 \
|
175 |
+
and batch_idx == 0 and self.ckpt_path is None:
|
176 |
+
# set rescale weight to 1./std of encodings
|
177 |
+
print("### USING STD-RESCALING ###")
|
178 |
+
|
179 |
+
z_q = self.encode_first_stage(batch[self.first_stage_key])
|
180 |
+
z = z_q.detach()
|
181 |
+
|
182 |
+
del self.z_scale_factor
|
183 |
+
self.register_buffer("z_scale_factor", 1. / z.flatten().std())
|
184 |
+
print(f"setting self.z_scale_factor to {self.z_scale_factor}")
|
185 |
+
|
186 |
+
print("### USING STD-RESCALING ###")
|
187 |
+
|
188 |
+
def compute_loss(self, model_outputs, split):
|
189 |
+
"""
|
190 |
+
|
191 |
+
Args:
|
192 |
+
model_outputs (dict):
|
193 |
+
- x_0:
|
194 |
+
- noise:
|
195 |
+
- noise_prior:
|
196 |
+
- noise_pred:
|
197 |
+
- noise_pred_prior:
|
198 |
+
|
199 |
+
split (str):
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
|
203 |
+
"""
|
204 |
+
|
205 |
+
pred = model_outputs["pred"]
|
206 |
+
|
207 |
+
if self.noise_scheduler.prediction_type == "epsilon":
|
208 |
+
target = model_outputs["noise"]
|
209 |
+
elif self.noise_scheduler.prediction_type == "sample":
|
210 |
+
target = model_outputs["x_0"]
|
211 |
+
else:
|
212 |
+
raise NotImplementedError(f"Prediction Type: {self.noise_scheduler.prediction_type} not yet supported.")
|
213 |
+
|
214 |
+
if self.loss_cfg.loss_type == "l1":
|
215 |
+
simple = F.l1_loss(pred, target, reduction="mean")
|
216 |
+
elif self.loss_cfg.loss_type in ["mse", "l2"]:
|
217 |
+
simple = F.mse_loss(pred, target, reduction="mean")
|
218 |
+
else:
|
219 |
+
raise NotImplementedError(f"Loss Type: {self.loss_cfg.loss_type} not yet supported.")
|
220 |
+
|
221 |
+
total_loss = simple
|
222 |
+
|
223 |
+
loss_dict = {
|
224 |
+
f"{split}/total_loss": total_loss.clone().detach(),
|
225 |
+
f"{split}/simple": simple.detach(),
|
226 |
+
}
|
227 |
+
|
228 |
+
return total_loss, loss_dict
|
229 |
+
|
230 |
+
def forward(self, batch):
|
231 |
+
"""
|
232 |
+
|
233 |
+
Args:
|
234 |
+
batch:
|
235 |
+
|
236 |
+
Returns:
|
237 |
+
|
238 |
+
"""
|
239 |
+
|
240 |
+
latents = self.encode_first_stage(batch[self.first_stage_key])
|
241 |
+
conditions = self.cond_stage_model.encode(batch[self.cond_stage_key])
|
242 |
+
|
243 |
+
# Sample noise that we"ll add to the latents
|
244 |
+
# [batch_size, n_token, latent_dim]
|
245 |
+
noise = torch.randn_like(latents)
|
246 |
+
bs = latents.shape[0]
|
247 |
+
# Sample a random timestep for each motion
|
248 |
+
timesteps = torch.randint(
|
249 |
+
0,
|
250 |
+
self.noise_scheduler.config.num_train_timesteps,
|
251 |
+
(bs,),
|
252 |
+
device=latents.device,
|
253 |
+
)
|
254 |
+
timesteps = timesteps.long()
|
255 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
256 |
+
noisy_z = self.noise_scheduler.add_noise(latents, noise, timesteps)
|
257 |
+
|
258 |
+
# diffusion model forward
|
259 |
+
noise_pred = self.model(noisy_z, timesteps, conditions)
|
260 |
+
|
261 |
+
diffusion_outputs = {
|
262 |
+
"x_0": noisy_z,
|
263 |
+
"noise": noise,
|
264 |
+
"pred": noise_pred
|
265 |
+
}
|
266 |
+
|
267 |
+
return diffusion_outputs
|
268 |
+
|
269 |
+
def training_step(self, batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
270 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
271 |
+
"""
|
272 |
+
|
273 |
+
Args:
|
274 |
+
batch (dict): the batch sample, and it contains:
|
275 |
+
- surface (torch.FloatTensor):
|
276 |
+
- image (torch.FloatTensor): if provide, [bs, 3, h, w], item range [0, 1]
|
277 |
+
- depth (torch.FloatTensor): if provide, [bs, 1, h, w], item range [-1, 1]
|
278 |
+
- normal (torch.FloatTensor): if provide, [bs, 3, h, w], item range [-1, 1]
|
279 |
+
- text (list of str):
|
280 |
+
|
281 |
+
batch_idx (int):
|
282 |
+
|
283 |
+
optimizer_idx (int):
|
284 |
+
|
285 |
+
Returns:
|
286 |
+
loss (torch.FloatTensor):
|
287 |
+
|
288 |
+
"""
|
289 |
+
|
290 |
+
diffusion_outputs = self(batch)
|
291 |
+
|
292 |
+
loss, loss_dict = self.compute_loss(diffusion_outputs, "train")
|
293 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
294 |
+
|
295 |
+
return loss
|
296 |
+
|
297 |
+
def validation_step(self, batch: Dict[str, torch.FloatTensor],
|
298 |
+
batch_idx: int, optimizer_idx: int = 0) -> torch.FloatTensor:
|
299 |
+
"""
|
300 |
+
|
301 |
+
Args:
|
302 |
+
batch (dict): the batch sample, and it contains:
|
303 |
+
- surface_pc (torch.FloatTensor): [n_pts, 4]
|
304 |
+
- surface_feats (torch.FloatTensor): [n_pts, c]
|
305 |
+
- text (list of str):
|
306 |
+
|
307 |
+
batch_idx (int):
|
308 |
+
|
309 |
+
optimizer_idx (int):
|
310 |
+
|
311 |
+
Returns:
|
312 |
+
loss (torch.FloatTensor):
|
313 |
+
|
314 |
+
"""
|
315 |
+
|
316 |
+
diffusion_outputs = self(batch)
|
317 |
+
|
318 |
+
loss, loss_dict = self.compute_loss(diffusion_outputs, "val")
|
319 |
+
self.log_dict(loss_dict, prog_bar=True, logger=True, sync_dist=False, rank_zero_only=True)
|
320 |
+
|
321 |
+
return loss
|
322 |
+
|
323 |
+
@torch.no_grad()
|
324 |
+
def sample(self,
|
325 |
+
batch: Dict[str, Union[torch.FloatTensor, List[str]]],
|
326 |
+
sample_times: int = 1,
|
327 |
+
steps: Optional[int] = None,
|
328 |
+
guidance_scale: Optional[float] = None,
|
329 |
+
eta: float = 0.0,
|
330 |
+
return_intermediates: bool = False, **kwargs):
|
331 |
+
|
332 |
+
if steps is None:
|
333 |
+
steps = self.scheduler_cfg.num_inference_steps
|
334 |
+
|
335 |
+
if guidance_scale is None:
|
336 |
+
guidance_scale = self.scheduler_cfg.guidance_scale
|
337 |
+
do_classifier_free_guidance = guidance_scale > 0
|
338 |
+
|
339 |
+
# conditional encode
|
340 |
+
xc = batch[self.cond_stage_key]
|
341 |
+
|
342 |
+
# print(self.first_stage_model.device, self.cond_stage_model.device, self.device)
|
343 |
+
|
344 |
+
cond = self.cond_stage_model(xc)
|
345 |
+
|
346 |
+
if do_classifier_free_guidance:
|
347 |
+
un_cond = self.cond_stage_model.unconditional_embedding(batch_size=len(xc))
|
348 |
+
cond = torch.cat([un_cond, cond], dim=0)
|
349 |
+
|
350 |
+
outputs = []
|
351 |
+
latents = None
|
352 |
+
|
353 |
+
if not return_intermediates:
|
354 |
+
for _ in range(sample_times):
|
355 |
+
sample_loop = ddim_sample(
|
356 |
+
self.denoise_scheduler,
|
357 |
+
self.model,
|
358 |
+
shape=self.first_stage_model.latent_shape,
|
359 |
+
cond=cond,
|
360 |
+
steps=steps,
|
361 |
+
guidance_scale=guidance_scale,
|
362 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
363 |
+
device=self.device,
|
364 |
+
eta=eta,
|
365 |
+
disable_prog=not self.zero_rank
|
366 |
+
)
|
367 |
+
for sample, t in sample_loop:
|
368 |
+
latents = sample
|
369 |
+
outputs.append(self.decode_first_stage(latents, **kwargs))
|
370 |
+
else:
|
371 |
+
|
372 |
+
sample_loop = ddim_sample(
|
373 |
+
self.denoise_scheduler,
|
374 |
+
self.model,
|
375 |
+
shape=self.first_stage_model.latent_shape,
|
376 |
+
cond=cond,
|
377 |
+
steps=steps,
|
378 |
+
guidance_scale=guidance_scale,
|
379 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
380 |
+
device=self.device,
|
381 |
+
eta=eta,
|
382 |
+
disable_prog=not self.zero_rank
|
383 |
+
)
|
384 |
+
|
385 |
+
iter_size = steps // sample_times
|
386 |
+
i = 0
|
387 |
+
for sample, t in sample_loop:
|
388 |
+
latents = sample
|
389 |
+
if i % iter_size == 0 or i == steps - 1:
|
390 |
+
outputs.append(self.decode_first_stage(latents, **kwargs))
|
391 |
+
i += 1
|
392 |
+
|
393 |
+
return outputs
|
michelangelo/models/asl_diffusion/inference_utils.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from tqdm import tqdm
|
5 |
+
from typing import Tuple, List, Union, Optional
|
6 |
+
from diffusers.schedulers import DDIMScheduler
|
7 |
+
|
8 |
+
|
9 |
+
__all__ = ["ddim_sample"]
|
10 |
+
|
11 |
+
|
12 |
+
def ddim_sample(ddim_scheduler: DDIMScheduler,
|
13 |
+
diffusion_model: torch.nn.Module,
|
14 |
+
shape: Union[List[int], Tuple[int]],
|
15 |
+
cond: torch.FloatTensor,
|
16 |
+
steps: int,
|
17 |
+
eta: float = 0.0,
|
18 |
+
guidance_scale: float = 3.0,
|
19 |
+
do_classifier_free_guidance: bool = True,
|
20 |
+
generator: Optional[torch.Generator] = None,
|
21 |
+
device: torch.device = "cuda:0",
|
22 |
+
disable_prog: bool = True):
|
23 |
+
|
24 |
+
assert steps > 0, f"{steps} must > 0."
|
25 |
+
|
26 |
+
# init latents
|
27 |
+
bsz = cond.shape[0]
|
28 |
+
if do_classifier_free_guidance:
|
29 |
+
bsz = bsz // 2
|
30 |
+
|
31 |
+
latents = torch.randn(
|
32 |
+
(bsz, *shape),
|
33 |
+
generator=generator,
|
34 |
+
device=cond.device,
|
35 |
+
dtype=cond.dtype,
|
36 |
+
)
|
37 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
38 |
+
latents = latents * ddim_scheduler.init_noise_sigma
|
39 |
+
# set timesteps
|
40 |
+
ddim_scheduler.set_timesteps(steps)
|
41 |
+
timesteps = ddim_scheduler.timesteps.to(device)
|
42 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
43 |
+
# eta (η) is only used with the DDIMScheduler, and between [0, 1]
|
44 |
+
extra_step_kwargs = {
|
45 |
+
"eta": eta,
|
46 |
+
"generator": generator
|
47 |
+
}
|
48 |
+
|
49 |
+
# reverse
|
50 |
+
for i, t in enumerate(tqdm(timesteps, disable=disable_prog, desc="DDIM Sampling:", leave=False)):
|
51 |
+
# expand the latents if we are doing classifier free guidance
|
52 |
+
latent_model_input = (
|
53 |
+
torch.cat([latents] * 2)
|
54 |
+
if do_classifier_free_guidance
|
55 |
+
else latents
|
56 |
+
)
|
57 |
+
# latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
58 |
+
# predict the noise residual
|
59 |
+
timestep_tensor = torch.tensor([t], dtype=torch.long, device=device)
|
60 |
+
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
|
61 |
+
noise_pred = diffusion_model.forward(latent_model_input, timestep_tensor, cond)
|
62 |
+
|
63 |
+
# perform guidance
|
64 |
+
if do_classifier_free_guidance:
|
65 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
66 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
67 |
+
noise_pred_text - noise_pred_uncond
|
68 |
+
)
|
69 |
+
# text_embeddings_for_guidance = encoder_hidden_states.chunk(
|
70 |
+
# 2)[1] if do_classifier_free_guidance else encoder_hidden_states
|
71 |
+
# compute the previous noisy sample x_t -> x_t-1
|
72 |
+
latents = ddim_scheduler.step(
|
73 |
+
noise_pred, t, latents, **extra_step_kwargs
|
74 |
+
).prev_sample
|
75 |
+
|
76 |
+
yield latents, t
|
77 |
+
|
78 |
+
|
79 |
+
def karra_sample():
|
80 |
+
pass
|
michelangelo/models/conditional_encoders/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .clip import CLIPEncoder
|