Spaces:
Runtime error
Runtime error
File size: 11,467 Bytes
b621857 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Dict
from michelangelo.models.modules.distributions import DiagonalGaussianDistribution
from michelangelo.utils.eval import compute_psnr
from michelangelo.utils import misc
class KLNearFar(nn.Module):
def __init__(self,
near_weight: float = 0.1,
kl_weight: float = 1.0,
num_near_samples: Optional[int] = None):
super().__init__()
self.near_weight = near_weight
self.kl_weight = kl_weight
self.num_near_samples = num_near_samples
self.geo_criterion = nn.BCEWithLogitsLoss()
def forward(self,
posteriors: Optional[DiagonalGaussianDistribution],
logits: torch.FloatTensor,
labels: torch.FloatTensor,
split: Optional[str] = "train", **kwargs) -> Tuple[torch.FloatTensor, Dict[str, float]]:
"""
Args:
posteriors (DiagonalGaussianDistribution or torch.distributions.Normal):
logits (torch.FloatTensor): [B, 2*N], logits[:, 0:N] is the volume points; logits[:, N:2N] is the near points;
labels (torch.FloatTensor): [B, 2*N], labels[:, 0:N] is the volume points; labels[:, N:2N] is the near points;
split (str):
**kwargs:
Returns:
loss (torch.Tensor): (,)
log (dict):
"""
if self.num_near_samples is None:
num_vol = logits.shape[1] // 2
else:
num_vol = logits.shape[1] - self.num_near_samples
vol_logits = logits[:, 0:num_vol]
vol_labels = labels[:, 0:num_vol]
near_logits = logits[:, num_vol:]
near_labels = labels[:, num_vol:]
# occupancy loss
# vol_bce = self.geo_criterion(vol_logits, vol_labels)
# near_bce = self.geo_criterion(near_logits, near_labels)
vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
near_bce = self.geo_criterion(near_logits.float(), near_labels.float())
if posteriors is None:
kl_loss = torch.tensor(0.0, dtype=vol_logits.dtype, device=vol_logits.device)
else:
kl_loss = posteriors.kl(dims=(1, 2))
kl_loss = torch.mean(kl_loss)
loss = vol_bce + near_bce * self.near_weight + kl_loss * self.kl_weight
with torch.no_grad():
preds = logits >= 0
accuracy = (preds == labels).float()
accuracy = accuracy.mean()
pos_ratio = torch.mean(labels)
log = {
"{}/total_loss".format(split): loss.clone().detach(),
"{}/near".format(split): near_bce.detach(),
"{}/far".format(split): vol_bce.detach(),
"{}/kl".format(split): kl_loss.detach(),
"{}/accuracy".format(split): accuracy,
"{}/pos_ratio".format(split): pos_ratio
}
if posteriors is not None:
log[f"{split}/mean"] = posteriors.mean.mean().detach()
log[f"{split}/std_mean"] = posteriors.std.mean().detach()
log[f"{split}/std_max"] = posteriors.std.max().detach()
return loss, log
class KLNearFarColor(nn.Module):
def __init__(self,
near_weight: float = 0.1,
kl_weight: float = 1.0,
color_weight: float = 1.0,
color_criterion: str = "mse",
num_near_samples: Optional[int] = None):
super().__init__()
self.color_weight = color_weight
self.near_weight = near_weight
self.kl_weight = kl_weight
self.num_near_samples = num_near_samples
if color_criterion == "mse":
self.color_criterion = nn.MSELoss()
elif color_criterion == "l1":
self.color_criterion = nn.L1Loss()
else:
raise ValueError(f"{color_criterion} must be [`mse`, `l1`].")
self.geo_criterion = nn.BCEWithLogitsLoss()
def forward(self,
posteriors: Optional[DiagonalGaussianDistribution],
logits: torch.FloatTensor,
labels: torch.FloatTensor,
pred_colors: torch.FloatTensor,
gt_colors: torch.FloatTensor,
split: Optional[str] = "train", **kwargs) -> Tuple[torch.FloatTensor, Dict[str, float]]:
"""
Args:
posteriors (DiagonalGaussianDistribution or torch.distributions.Normal):
logits (torch.FloatTensor): [B, 2*N], logits[:, 0:N] is the volume points; logits[:, N:2N] is the near points;
labels (torch.FloatTensor): [B, 2*N], labels[:, 0:N] is the volume points; labels[:, N:2N] is the near points;
pred_colors (torch.FloatTensor): [B, M, 3]
gt_colors (torch.FloatTensor): [B, M, 3]
split (str):
**kwargs:
Returns:
loss (torch.Tensor): (,)
log (dict):
"""
if self.num_near_samples is None:
num_vol = logits.shape[1] // 2
else:
num_vol = logits.shape[1] - self.num_near_samples
vol_logits = logits[:, 0:num_vol]
vol_labels = labels[:, 0:num_vol]
near_logits = logits[:, num_vol:]
near_labels = labels[:, num_vol:]
# occupancy loss
# vol_bce = self.geo_criterion(vol_logits, vol_labels)
# near_bce = self.geo_criterion(near_logits, near_labels)
vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
near_bce = self.geo_criterion(near_logits.float(), near_labels.float())
# surface color loss
color = self.color_criterion(pred_colors, gt_colors)
if posteriors is None:
kl_loss = torch.tensor(0.0, dtype=pred_colors.dtype, device=pred_colors.device)
else:
kl_loss = posteriors.kl(dims=(1, 2))
kl_loss = torch.mean(kl_loss)
loss = vol_bce + near_bce * self.near_weight + color * self.color_weight + kl_loss * self.kl_weight
with torch.no_grad():
preds = logits >= 0
accuracy = (preds == labels).float()
accuracy = accuracy.mean()
psnr = compute_psnr(pred_colors, gt_colors)
log = {
"{}/total_loss".format(split): loss.clone().detach(),
"{}/near".format(split): near_bce.detach(),
"{}/far".format(split): vol_bce.detach(),
"{}/color".format(split): color.detach(),
"{}/kl".format(split): kl_loss.detach(),
"{}/psnr".format(split): psnr.detach(),
"{}/accuracy".format(split): accuracy
}
return loss, log
class ContrastKLNearFar(nn.Module):
def __init__(self,
contrast_weight: float = 1.0,
near_weight: float = 0.1,
kl_weight: float = 1.0,
num_near_samples: Optional[int] = None):
super().__init__()
self.labels = None
self.last_local_batch_size = None
self.contrast_weight = contrast_weight
self.near_weight = near_weight
self.kl_weight = kl_weight
self.num_near_samples = num_near_samples
self.geo_criterion = nn.BCEWithLogitsLoss()
def forward(self,
shape_embed: torch.FloatTensor,
text_embed: torch.FloatTensor,
image_embed: torch.FloatTensor,
logit_scale: torch.FloatTensor,
posteriors: Optional[DiagonalGaussianDistribution],
shape_logits: torch.FloatTensor,
shape_labels: torch.FloatTensor,
split: Optional[str] = "train", **kwargs):
local_batch_size = shape_embed.size(0)
if local_batch_size != self.last_local_batch_size:
self.labels = local_batch_size * misc.get_rank() + torch.arange(
local_batch_size, device=shape_embed.device
).long()
self.last_local_batch_size = local_batch_size
# normalized features
shape_embed = F.normalize(shape_embed, dim=-1, p=2)
text_embed = F.normalize(text_embed, dim=-1, p=2)
image_embed = F.normalize(image_embed, dim=-1, p=2)
# gather features from all GPUs
shape_embed_all, text_embed_all, image_embed_all = misc.all_gather_batch(
[shape_embed, text_embed, image_embed]
)
# cosine similarity as logits
logits_per_shape_text = logit_scale * shape_embed @ text_embed_all.t()
logits_per_text_shape = logit_scale * text_embed @ shape_embed_all.t()
logits_per_shape_image = logit_scale * shape_embed @ image_embed_all.t()
logits_per_image_shape = logit_scale * image_embed @ shape_embed_all.t()
contrast_loss = (F.cross_entropy(logits_per_shape_text, self.labels) +
F.cross_entropy(logits_per_text_shape, self.labels)) / 2 + \
(F.cross_entropy(logits_per_shape_image, self.labels) +
F.cross_entropy(logits_per_image_shape, self.labels)) / 2
# shape reconstruction
if self.num_near_samples is None:
num_vol = shape_logits.shape[1] // 2
else:
num_vol = shape_logits.shape[1] - self.num_near_samples
vol_logits = shape_logits[:, 0:num_vol]
vol_labels = shape_labels[:, 0:num_vol]
near_logits = shape_logits[:, num_vol:]
near_labels = shape_labels[:, num_vol:]
# occupancy loss
vol_bce = self.geo_criterion(vol_logits.float(), vol_labels.float())
near_bce = self.geo_criterion(near_logits.float(), near_labels.float())
if posteriors is None:
kl_loss = torch.tensor(0.0, dtype=vol_logits.dtype, device=vol_logits.device)
else:
kl_loss = posteriors.kl(dims=(1, 2))
kl_loss = torch.mean(kl_loss)
loss = vol_bce + near_bce * self.near_weight + kl_loss * self.kl_weight + contrast_loss * self.contrast_weight
# compute accuracy
with torch.no_grad():
pred = torch.argmax(logits_per_shape_text, dim=-1)
correct = pred.eq(self.labels).sum()
shape_text_acc = 100 * correct / local_batch_size
pred = torch.argmax(logits_per_shape_image, dim=-1)
correct = pred.eq(self.labels).sum()
shape_image_acc = 100 * correct / local_batch_size
preds = shape_logits >= 0
accuracy = (preds == shape_labels).float()
accuracy = accuracy.mean()
log = {
"{}/contrast".format(split): contrast_loss.clone().detach(),
"{}/near".format(split): near_bce.detach(),
"{}/far".format(split): vol_bce.detach(),
"{}/kl".format(split): kl_loss.detach(),
"{}/shape_text_acc".format(split): shape_text_acc,
"{}/shape_image_acc".format(split): shape_image_acc,
"{}/total_loss".format(split): loss.clone().detach(),
"{}/accuracy".format(split): accuracy,
}
if posteriors is not None:
log[f"{split}/mean"] = posteriors.mean.mean().detach()
log[f"{split}/std_mean"] = posteriors.std.mean().detach()
log[f"{split}/std_max"] = posteriors.std.max().detach()
return loss, log
|