Spaces:
Running
Running
File size: 5,243 Bytes
1f3a4ec 166575b 1f3a4ec f3cadf1 166575b 1f3a4ec 166575b 1f3a4ec 166575b 1f3a4ec 166575b 1f3a4ec 166575b 1f3a4ec 166575b 1f3a4ec 166575b 1f3a4ec 166575b 1f3a4ec 166575b 1f3a4ec 166575b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
asr_datsets = {'LibriSpeech-Test-Clean': 'A clean, high-quality testset of the LibriSpeech dataset, used for ASR testing.',
'LibriSpeech-Test-Other' : 'A more challenging, noisier testset of the LibriSpeech dataset for ASR testing.',
'Common-Voice-15-En-Test': 'Test set from the Common Voice project, which is a crowd-sourced, multilingual speech dataset.',
'Peoples-Speech-Test' : 'A large-scale, open-source speech recognition dataset, with diverse accents and domains.',
'GigaSpeech-Test' : 'A large-scale ASR dataset with diverse audio sources like podcasts, interviews, etc.',
'Earnings21-Test' : 'ASR test dataset focused on earnings calls from 2021, with professional speech and financial jargon.',
'Earnings22-Test' : 'Similar to Earnings21, but covering earnings calls from 2022.',
'Tedlium3-Test' : 'A test set derived from TED talks, covering diverse speakers and topics.',
'Tedlium3-Long-form-Test': 'A longer version of the TED-LIUM dataset, containing extended audio samples. This poses challenges to existing fusion methods in handling long audios. However, it provides benchmark for future development.',
'IMDA-Part1-ASR-Test' : 'Speech recognition test data from the IMDA NSC project, Part 1.',
'IMDA-Part2-ASR-Test' : 'Speech recognition test data from the IMDA NSC project, Part 1.'
}
sqa_datasets = {'CN-College-Listen-MCQ-Test': 'Chinese College English Listening Test, with multiple-choice questions.',
'DREAM-TTS-MCQ-Test': 'DREAM dataset for spoken question-answering, derived from textual data and synthesized speech.',
'SLUE-P2-SQA5-Test': 'Spoken Language Understanding Evaluation (SLUE) dataset, part 2, focused on QA tasks.',
'Public-SG-Speech-QA-Test': 'Public dataset for speech-based question answering, gathered from Singapore.',
'Spoken-Squad-Test': 'Spoken SQuAD dataset, based on the textual SQuAD dataset, converted into audio.'
}
si_datasets = {'OpenHermes-Audio-Test': 'Test set for spoken instructions. Synthesized from the OpenHermes dataset.',
'ALPACA-Audio-Test': 'Spoken version of the ALPACA dataset, used for evaluating instruction following in audio.'
}
ac_datasets = {
'WavCaps-Test': 'WavCaps is a dataset for testing audio captioning, where models generate textual descriptions of audio clips.',
'AudioCaps-Test': 'AudioCaps dataset, used for generating captions from general audio events.'
}
asqa_datasets = {
'Clotho-AQA-Test': 'Clotho dataset adapted for audio-based question answering, containing audio clips and questions.',
'WavCaps-QA-Test': 'Question-answering test dataset derived from WavCaps, focusing on audio content.',
'AudioCaps-QA-Test': 'AudioCaps adapted for question-answering tasks, using audio events as input for Q&A.'
}
er_datasets = {
'IEMOCAP-Emotion-Test': 'Emotion recognition test data from the IEMOCAP dataset, focusing on identifying emotions in speech.',
'MELD-Sentiment-Test': 'Sentiment recognition from speech using the MELD dataset, classifying positive, negative, or neutral sentiments.',
'MELD-Emotion-Test': 'Emotion classification in speech using MELD, detecting specific emotions like happiness, anger, etc.'
}
ar_datsets = {
'VoxCeleb-Accent-Test': 'Test dataset for accent recognition, based on VoxCeleb, a large speaker identification dataset.'
}
gr_datasets = {
'VoxCeleb-Gender-Test': 'Test dataset for gender classification, also derived from VoxCeleb.',
'IEMOCAP-Gender-Test': 'Gender classification based on the IEMOCAP dataset.'
}
spt_datasets = {
'Covost2-EN-ID-test': 'Covost 2 dataset for speech translation from English to Indonesian.',
'Covost2-EN-ZH-test': 'Covost 2 dataset for speech translation from English to Chinese.',
'Covost2-EN-TA-test': 'Covost 2 dataset for speech translation from English to Tamil.',
'Covost2-ID-EN-test': 'Covost 2 dataset for speech translation from Indonesian to English.',
'Covost2-ZH-EN-test': 'Covost 2 dataset for speech translation from Chinese to English.',
'Covost2-TA-EN-test': 'Covost 2 dataset for speech translation from Tamil to English.'
}
cnasr_datasets = {
'Aishell-ASR-ZH-Test': 'ASR test dataset for Mandarin Chinese, based on the Aishell dataset.'
}
metrics = {
'wer': 'Word Error Rate (WER), a common metric for ASR evaluation. (The lower the better)',
'llama3_70b_judge_binary': 'Binary evaluation using the LLAMA3-70B model, for tasks requiring a binary outcome. (0-100 based on score 0-1)',
'llama3_70b_judge': 'General evaluation using the LLAMA3-70B model, typically scoring based on subjective judgments. (0-100 based on score 0-5)',
'meteor': 'METEOR, a metric used for evaluating text generation, often used in translation or summarization tasks. (Sensitive to output length)',
'bleu': 'BLEU (Bilingual Evaluation Understudy), another text generation evaluation metric commonly used in machine translation. (Sensitive to output length)',
} |