Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- app/content.py +74 -0
- app/pages.py +56 -21
app/content.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
asr_datsets = {'LibriSpeech-Test-Clean': 'aa',
|
2 |
+
'LibriSpeech-Test-Other': 'bb',
|
3 |
+
'Common-Voice-15-En-Test': 'cc',
|
4 |
+
'Peoples-Speech-Test': 'dd',
|
5 |
+
'GigaSpeech-Test': 'ee',
|
6 |
+
'Earnings21-Test': 'ff',
|
7 |
+
'Earnings22-Test': 'gg',
|
8 |
+
'Tedlium3-Test': 'hh',
|
9 |
+
'Tedlium3-Longform-Test': 'ii',
|
10 |
+
'IMDA-Part1-ASR-Test': 'jj',
|
11 |
+
'IMDA-Part2-ASR-Test': 'kk',
|
12 |
+
'IMDA-Part3-ASR-Test': 'll',
|
13 |
+
'IMDA-Part4-ASR-Test': 'mm',
|
14 |
+
'IMDA-Part5-ASR-Test': 'nn',
|
15 |
+
'IMDA-Part6-ASR-Test': 'oo'
|
16 |
+
}
|
17 |
+
|
18 |
+
sqa_datasets = {'CN-College-Listen-MCQ-Test': 'aa',
|
19 |
+
'DREAM-TTS-MCQ-Test': 'bb',
|
20 |
+
'SLUE-P2-SQA5-Test': 'cc',
|
21 |
+
'Public-SG-Speech-QA-Test': 'dd',
|
22 |
+
'Spoken-Squad-v1': 'ee'
|
23 |
+
}
|
24 |
+
|
25 |
+
si_datasets = {'OpenHermes-Audio-Test': 'aa',
|
26 |
+
'ALPACA-Audio-Test': 'bb'
|
27 |
+
}
|
28 |
+
|
29 |
+
ac_datasets = {
|
30 |
+
'WavCaps-Test': 'aa',
|
31 |
+
'AudioCaps-Test': 'bb'
|
32 |
+
}
|
33 |
+
|
34 |
+
asqa_datasets = {
|
35 |
+
'Clotho-AQA-Test': 'aa',
|
36 |
+
'WavCaps-QA-Test': 'bb',
|
37 |
+
'AudioCaps-QA-Test': 'cc'
|
38 |
+
}
|
39 |
+
|
40 |
+
er_datasets = {
|
41 |
+
'IEMOCAP-Emotion-Test': 'aa',
|
42 |
+
'MELD-Sentiment-Test': 'bb',
|
43 |
+
'MELD-Emotion-Test': 'cc'
|
44 |
+
}
|
45 |
+
|
46 |
+
ar_datsets = {
|
47 |
+
'VoxCeleb-Accent-Test': 'aa'
|
48 |
+
}
|
49 |
+
|
50 |
+
gr_datasets = {
|
51 |
+
'VoxCeleb-Gender-Test': 'aa',
|
52 |
+
'IEMOCAP-Gender-Test': 'bb'
|
53 |
+
}
|
54 |
+
|
55 |
+
spt_datasets = {
|
56 |
+
'Covost2-EN-ID-test': 'aa',
|
57 |
+
'Covost2-EN-ZH-test': 'bb',
|
58 |
+
'Covost2-EN-TA-test': 'cc',
|
59 |
+
'Covost2-ID-EN-test': 'dd',
|
60 |
+
'Covost2-ZH-EN-test': 'ee',
|
61 |
+
'Covost2-TA-EN-test': 'ff'
|
62 |
+
}
|
63 |
+
|
64 |
+
cnasr_datasets = {
|
65 |
+
'Aishell-ASR-ZH-Test': 'aa'
|
66 |
+
}
|
67 |
+
|
68 |
+
metrics = {
|
69 |
+
'wer': '11',
|
70 |
+
'llama3_70b_judge_binary': '22',
|
71 |
+
'llama3_70b_judge': '33',
|
72 |
+
'meteor': '44',
|
73 |
+
'bleu': '55'
|
74 |
+
}
|
app/pages.py
CHANGED
@@ -1,5 +1,29 @@
|
|
1 |
import streamlit as st
|
2 |
from app.draw_diagram import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def dashboard():
|
5 |
|
@@ -107,9 +131,10 @@ def asr():
|
|
107 |
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
108 |
|
109 |
if filter_1:
|
|
|
110 |
draw('su', 'ASR', filter_1, 'wer')
|
111 |
-
else:
|
112 |
-
|
113 |
|
114 |
|
115 |
## examples
|
@@ -133,11 +158,14 @@ def sqa():
|
|
133 |
|
134 |
if filter_1:
|
135 |
if filter_1 in binary:
|
|
|
136 |
draw('su', 'SQA', filter_1, 'llama3_70b_judge_binary')
|
|
|
137 |
else:
|
|
|
138 |
draw('su', 'SQA', filter_1, 'llama3_70b_judge')
|
139 |
-
else:
|
140 |
-
|
141 |
|
142 |
def si():
|
143 |
st.title("Speech Question Answering")
|
@@ -151,9 +179,10 @@ def si():
|
|
151 |
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
152 |
|
153 |
if filter_1:
|
|
|
154 |
draw('su', 'SI', filter_1, 'llama3_70b_judge')
|
155 |
-
else:
|
156 |
-
|
157 |
|
158 |
def ac():
|
159 |
st.title("Audio Captioning")
|
@@ -181,9 +210,10 @@ def ac():
|
|
181 |
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
182 |
|
183 |
if filter_1 or metric:
|
|
|
184 |
draw('asu', 'AC',filter_1, metric.lower().replace('-', '_'))
|
185 |
-
else:
|
186 |
-
|
187 |
|
188 |
def asqa():
|
189 |
st.title("Audio Scene Question Answering")
|
@@ -198,9 +228,10 @@ def asqa():
|
|
198 |
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
199 |
|
200 |
if filter_1:
|
|
|
201 |
draw('asu', 'AQA',filter_1, 'llama3_70b_judge')
|
202 |
-
else:
|
203 |
-
|
204 |
|
205 |
def er():
|
206 |
st.title("Emotion Recognition")
|
@@ -208,7 +239,7 @@ def er():
|
|
208 |
filters_levelone = ['IEMOCAP-Emotion-Test',
|
209 |
'MELD-Sentiment-Test',
|
210 |
'MELD-Emotion-Test']
|
211 |
-
sort_leveltwo = []
|
212 |
|
213 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
214 |
|
@@ -231,9 +262,10 @@ def er():
|
|
231 |
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
232 |
|
233 |
if filter_1:
|
|
|
234 |
draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary')
|
235 |
-
else:
|
236 |
-
|
237 |
|
238 |
def ar():
|
239 |
st.title("Accent Recognition")
|
@@ -247,9 +279,9 @@ def ar():
|
|
247 |
|
248 |
|
249 |
if filter_1:
|
|
|
250 |
draw('vu', 'AR', filter_1, 'llama3_70b_judge')
|
251 |
-
|
252 |
-
draw('vu', 'AR', 'VoxCeleb-Accent-Test', 'llama3_70b_judge')
|
253 |
|
254 |
def gr():
|
255 |
st.title("Emotion Recognition")
|
@@ -263,9 +295,10 @@ def gr():
|
|
263 |
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
264 |
|
265 |
if filter_1:
|
|
|
266 |
draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary')
|
267 |
-
else:
|
268 |
-
|
269 |
|
270 |
def spt():
|
271 |
st.title("Speech Translation")
|
@@ -283,9 +316,10 @@ def spt():
|
|
283 |
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
284 |
|
285 |
if filter_1:
|
|
|
286 |
draw('su', 'ST', filter_1, 'bleu')
|
287 |
-
else:
|
288 |
-
|
289 |
|
290 |
def cnasr():
|
291 |
st.title("Chinese Automatic Speech Recognition")
|
@@ -298,6 +332,7 @@ def cnasr():
|
|
298 |
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
299 |
|
300 |
if filter_1:
|
|
|
301 |
draw('su', 'CNASR', filter_1, 'wer')
|
302 |
-
else:
|
303 |
-
|
|
|
1 |
import streamlit as st
|
2 |
from app.draw_diagram import *
|
3 |
+
from app.content import *
|
4 |
+
|
5 |
+
def dataset_contents(dataset, metrics):
|
6 |
+
|
7 |
+
custom_css = """
|
8 |
+
<style>
|
9 |
+
.my-dataset-info {
|
10 |
+
# background-color: #F9EBEA;
|
11 |
+
# padding: 10px;
|
12 |
+
color: #626567;
|
13 |
+
font-style: italic;
|
14 |
+
font-size: 8px;
|
15 |
+
height: auto;
|
16 |
+
}
|
17 |
+
</style>
|
18 |
+
"""
|
19 |
+
st.markdown(custom_css, unsafe_allow_html=True)
|
20 |
+
st.markdown(f"""<div class="my-dataset-info">
|
21 |
+
<p>DATASET INFORMATION: {dataset}</p>
|
22 |
+
</div>""", unsafe_allow_html=True)
|
23 |
+
st.markdown(f"""<div class="my-dataset-info">
|
24 |
+
<p>METRIC INFORMATION: {metrics}</p>
|
25 |
+
</div>""", unsafe_allow_html=True)
|
26 |
+
|
27 |
|
28 |
def dashboard():
|
29 |
|
|
|
131 |
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
132 |
|
133 |
if filter_1:
|
134 |
+
dataset_contents(asr_datsets[filter_1], metrics['wer'])
|
135 |
draw('su', 'ASR', filter_1, 'wer')
|
136 |
+
# else:
|
137 |
+
# draw('su', 'ASR', 'LibriSpeech-Test-Clean', 'wer')
|
138 |
|
139 |
|
140 |
## examples
|
|
|
158 |
|
159 |
if filter_1:
|
160 |
if filter_1 in binary:
|
161 |
+
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge_binary'])
|
162 |
draw('su', 'SQA', filter_1, 'llama3_70b_judge_binary')
|
163 |
+
|
164 |
else:
|
165 |
+
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
166 |
draw('su', 'SQA', filter_1, 'llama3_70b_judge')
|
167 |
+
# else:
|
168 |
+
# draw('su', 'SQA', 'CN-College-Listen-Test', 'llama3_70b_judge_binary')
|
169 |
|
170 |
def si():
|
171 |
st.title("Speech Question Answering")
|
|
|
179 |
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
180 |
|
181 |
if filter_1:
|
182 |
+
dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge'])
|
183 |
draw('su', 'SI', filter_1, 'llama3_70b_judge')
|
184 |
+
# else:
|
185 |
+
# draw('su', 'SI', 'OpenHermes-Audio-Test', 'llama3_70b_judge')
|
186 |
|
187 |
def ac():
|
188 |
st.title("Audio Captioning")
|
|
|
210 |
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
211 |
|
212 |
if filter_1 or metric:
|
213 |
+
dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')])
|
214 |
draw('asu', 'AC',filter_1, metric.lower().replace('-', '_'))
|
215 |
+
# else:
|
216 |
+
# draw('asu', 'AC', 'WavCaps-Test', 'llama3_70b_judge')
|
217 |
|
218 |
def asqa():
|
219 |
st.title("Audio Scene Question Answering")
|
|
|
228 |
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
229 |
|
230 |
if filter_1:
|
231 |
+
dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge'])
|
232 |
draw('asu', 'AQA',filter_1, 'llama3_70b_judge')
|
233 |
+
# else:
|
234 |
+
# draw('asu', 'AQA', 'Clotho-AQA-Test', 'llama3_70b_judge')
|
235 |
|
236 |
def er():
|
237 |
st.title("Emotion Recognition")
|
|
|
239 |
filters_levelone = ['IEMOCAP-Emotion-Test',
|
240 |
'MELD-Sentiment-Test',
|
241 |
'MELD-Emotion-Test']
|
242 |
+
# sort_leveltwo = []
|
243 |
|
244 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
245 |
|
|
|
262 |
# sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
263 |
|
264 |
if filter_1:
|
265 |
+
dataset_contents(er_datasets[filter_1], metrics['llama3_70b_judge_binary'])
|
266 |
draw('vu', 'ER', filter_1, 'llama3_70b_judge_binary')
|
267 |
+
# else:
|
268 |
+
# draw('vu', 'ER', 'IEMOCAP-Emotion-Test', 'llama3_70b_judge_binary')
|
269 |
|
270 |
def ar():
|
271 |
st.title("Accent Recognition")
|
|
|
279 |
|
280 |
|
281 |
if filter_1:
|
282 |
+
dataset_contents(ar_datsets[filter_1], metrics['llama3_70b_judge'])
|
283 |
draw('vu', 'AR', filter_1, 'llama3_70b_judge')
|
284 |
+
|
|
|
285 |
|
286 |
def gr():
|
287 |
st.title("Emotion Recognition")
|
|
|
295 |
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
296 |
|
297 |
if filter_1:
|
298 |
+
dataset_contents(gr_datasets[filter_1], metrics['llama3_70b_judge_binary'])
|
299 |
draw('vu', 'GR', filter_1, 'llama3_70b_judge_binary')
|
300 |
+
# else:
|
301 |
+
# draw('vu', 'GR', 'VoxCeleb1-Gender-Test', 'llama3_70b_judge_binary')
|
302 |
|
303 |
def spt():
|
304 |
st.title("Speech Translation")
|
|
|
316 |
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
317 |
|
318 |
if filter_1:
|
319 |
+
dataset_contents(spt_datasets[filter_1], metrics['bleu'])
|
320 |
draw('su', 'ST', filter_1, 'bleu')
|
321 |
+
# else:
|
322 |
+
# draw('su', 'ST', 'Covost2-EN-ID-test', 'bleu')
|
323 |
|
324 |
def cnasr():
|
325 |
st.title("Chinese Automatic Speech Recognition")
|
|
|
332 |
filter_1 = st.selectbox('Select Dataset', filters_levelone)
|
333 |
|
334 |
if filter_1:
|
335 |
+
dataset_contents(cnasr_datasets[filter_1], metrics['wer'])
|
336 |
draw('su', 'CNASR', filter_1, 'wer')
|
337 |
+
# else:
|
338 |
+
# draw('su', 'CNASR', 'Aishell-ASR-ZH-Test', 'wer')
|