Spaces:
Sleeping
Sleeping
File size: 9,398 Bytes
60aa916 2386b40 df61998 2386b40 60aa916 df61998 2d413f9 60aa916 d504e45 60aa916 d504e45 60aa916 d504e45 60aa916 f0b81b4 2d413f9 60aa916 2d9947c 60aa916 2d9947c 60aa916 2d9947c 60aa916 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
import datasets
import numpy as np
import pandas as pd
import pymysql.cursors
import streamlit as st
from streamlit_elements import elements, mui, html, dashboard, nivo
from streamlit_extras.switch_page_button import switch_page
from streamlit_extras.metric_cards import style_metric_cards
from streamlit_extras.stylable_container import stylable_container
from pages.Gallery import load_hf_dataset
from pages.Ranking import connect_to_db
class DashboardApp:
def __init__(self, roster, promptBook, session_finished):
self.roster = roster
self.promptBook = promptBook
self.session_finished = session_finished
def sidebar(self, tags, mode):
with st.sidebar:
tag = st.selectbox('Select a tag', tags, key='tag')
return tag
def leaderboard(self, tag, db_table):
tag = '%' if tag == 'all' else tag
# get the ranking results of the current user
curser = RANKING_CONN.cursor()
curser.execute(f"SELECT * FROM {db_table} WHERE username = '{st.session_state.user_id[0]}' AND timestamp = '{st.session_state.user_id[1]}' AND tag LIKE '{tag}'")
results = curser.fetchall()
curser.close()
modelVersion_standings = self.score_calculator(results, db_table)
# sort the modelVersion_standings by value into a list of tuples in descending order
modelVersion_standings = sorted(modelVersion_standings.items(), key=lambda x: x[1], reverse=True)
tab1, tab2 = st.tabs(['Top Picks', 'Detailed Info'])
with tab1:
# self.podium(modelVersion_standings)
self.podium_expander(modelVersion_standings)
with tab2:
st.write('## Detailed information of all selected models')
detailed_info = pd.merge(pd.DataFrame(modelVersion_standings, columns=['modelVersion_id', 'ranking_score']), self.roster, on='modelVersion_id')
st.data_editor(detailed_info, hide_index=True, disabled=True)
def podium(self, modelVersion_standings, n=3):
st.write('## Top picks')
metric_cols = st.columns(n)
image_display = st.empty()
for i in range(n):
with metric_cols[i]:
modelVersion_id = modelVersion_standings[i][0]
winning_times = modelVersion_standings[i][1]
model_id, model_name, modelVersion_name, url = self.roster[self.roster['modelVersion_id'] == modelVersion_id][['model_id', 'model_name', 'modelVersion_name', 'modelVersion_url']].values[0]
metric_card = stylable_container(
key="container_with_border",
css_styles="""
{
border: 1.5px solid rgba(49, 51, 63, 0.2);
border-left: 0.5rem solid gold;
border-radius: 5px;
padding: calc(1em + 5px);
gap: 0.5em;
box-shadow: 0 0 2rem rgba(0, 0, 0, 0.08);
overflow-x: scroll;
}
""",
)
with metric_card:
icon = '๐ฅ'if i == 0 else '๐ฅ' if i == 1 else '๐ฅ'
# st.write(model_id)
st.write(f'### {icon} {model_name}, [{modelVersion_name}](https://civitai.com/models/{model_id}?modelVersionId={modelVersion_id})')
st.write(f'Ranking Score: {winning_times}')
show_image = st.button('Show Image', key=modelVersion_id, use_container_width=True)
if show_image:
images = self.promptBook[self.promptBook['modelVersion_id'] == modelVersion_id]['image_id'].values
with image_display.container():
st.write('---')
st.write(f'### Images generated with {icon} {model_name}, {modelVersion_name}')
col_num = 4
image_cols = st.columns(col_num)
for i in range(len(images)):
with image_cols[i % col_num]:
image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{images[i]}.png"
st.image(image, use_column_width=True)
# # st.write('---')
# expander = st.expander(f'# {icon} {model_name}, [{modelVersion_name}](https://civitai.com/models/{modelVersion_id})')
# with expander:
# images = self.promptBook[self.promptBook['modelVersion_id'] == modelVersion_id]['image_id'].values
# st.write(images)
def podium_expander(self, modelVersion_standings, n=3):
st.write('## Top picks')
# metric_cols = st.columns(n)
for i in range(n):
# with metric_cols[i]:
modelVersion_id = modelVersion_standings[i][0]
winning_times = modelVersion_standings[i][1]
model_id, model_name, modelVersion_name, url = self.roster[self.roster['modelVersion_id'] == modelVersion_id][['model_id', 'model_name', 'modelVersion_name', 'modelVersion_url']].values[0]
icon = '๐ฅ'if i == 0 else '๐ฅ' if i == 1 else '๐ฅ'
with st.expander(f'**{icon} {model_name}, [{modelVersion_name}](https://civitai.com/models/{model_id}?modelVersionId={modelVersion_id})**, Ranking Score: {winning_times}'):
images = self.promptBook[self.promptBook['modelVersion_id'] == modelVersion_id]['image_id'].values
st.write(f'### Images generated with {icon} {model_name}, {modelVersion_name}')
col_num = 4
image_cols = st.columns(col_num)
for i in range(len(images)):
with image_cols[i % col_num]:
image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{images[i]}.png"
st.image(image, use_column_width=True)
def score_calculator(self, results, db_table):
# sort results by battle time
results = sorted(results, key=lambda x: x['battletime'])
modelVersion_standings = {}
if db_table == 'battle_results':
for record in results:
modelVersion_standings[record['winner']] = modelVersion_standings.get(record['winner'], 0) + 1
# add the loser who never wins
if record['loser'] not in modelVersion_standings:
modelVersion_standings[record['loser']] = 0
# add the winning time of the loser to the winner
modelVersion_standings[record['winner']] += modelVersion_standings[record['loser']]
elif db_table == 'sort_results':
pts_map = {'position1': 5, 'position2': 3, 'position3': 1, 'position4': 0}
for record in results:
for i in range(1, 5):
modelVersion_standings[record[f'position{i}']] = modelVersion_standings.get(record[f'position{i}'], 0) + pts_map[f'position{i}']
return modelVersion_standings
def app(self):
st.title('Your Preferred Models', help="Scores are calculated based on your ranking results.")
mode = st.sidebar.radio('Ranking mode', ['Sort', 'Battle'], horizontal=True, index=1)
# get tags from database of the current user
db_table = 'sort_results' if mode == 'Sort' else 'battle_results'
tags = ['all']
curser = RANKING_CONN.cursor()
curser.execute(
f"SELECT DISTINCT tag FROM {db_table} WHERE username = '{st.session_state.user_id[0]}' AND timestamp = '{st.session_state.user_id[1]}'")
for row in curser.fetchall():
tags.append(row['tag'])
curser.close()
if tags == ['all']:
st.info(f'No rankings are finished with {mode} mode yet.')
else:
tag = self.sidebar(tags, mode)
self.leaderboard(tag, db_table)
st.chat_input('Please leave your comments here.', key='comment')
if __name__ == "__main__":
st.set_page_config(layout="wide")
if 'user_id' not in st.session_state:
st.warning('Please log in first.')
home_btn = st.button('Go to Home Page')
if home_btn:
switch_page("home")
elif 'progress' not in st.session_state:
st.info('You have not checked any image yet. Please go back to the gallery page and check some images.')
gallery_btn = st.button('๐ผ๏ธ Go to Gallery')
if gallery_btn:
switch_page('gallery')
else:
session_finished = []
for key, value in st.session_state.progress.items():
if value == 'finished':
session_finished.append(key)
if len(session_finished) == 0:
st.info('A dashboard showing your preferred models will appear after you finish any ranking session.')
ranking_btn = st.button('๐๏ธ Go to Ranking')
if ranking_btn:
switch_page('ranking')
gallery_btn = st.button('๐ผ๏ธ Go to Gallery')
if gallery_btn:
switch_page('gallery')
else:
roster, promptBook, images_ds = load_hf_dataset()
RANKING_CONN = connect_to_db()
app = DashboardApp(roster, promptBook, session_finished)
app.app()
|