Spaces:
Running
Running
File size: 20,896 Bytes
fc46f2c ab7af41 5a73433 5071575 372a5eb fc46f2c 981e3c6 2547dd4 fc46f2c 33e4e70 ab7af41 33e4e70 ab7af41 33e4e70 ab7af41 33e4e70 d208f1e 33e4e70 5a73433 33e4e70 5a73433 33e4e70 5a73433 fc46f2c 5071575 57efa0c 5071575 99269bd 5071575 981e3c6 eb3896f 981e3c6 eb3896f 5071575 57efa0c 5071575 f1f3822 5071575 a1a0788 5071575 a1a0788 5071575 a1a0788 f1f3822 5071575 5a73433 ab7af41 5a73433 5071575 5a73433 99269bd 57efa0c 99269bd 57efa0c 5071575 99269bd 5a73433 3f93878 5a73433 99269bd ab7af41 5071575 3f93878 d208f1e 5071575 d208f1e 5071575 57efa0c 5071575 57efa0c 5071575 57efa0c fc46f2c 5a73433 981e3c6 5a73433 981e3c6 5a73433 ea842a4 5a73433 ef0cf30 5a73433 eb3896f 981e3c6 eb3896f 5a73433 fc46f2c 5a73433 ab7af41 5a73433 ab7af41 5a73433 ab7af41 5a73433 ab7af41 5a73433 60bd67d 3f93878 981e3c6 5a73433 ab7af41 60bd67d 5071575 5a73433 981e3c6 eb3896f 981e3c6 eb3896f 981e3c6 eb3896f 981e3c6 eb3896f 981e3c6 eb3896f 981e3c6 eb3896f 981e3c6 eb3896f 0424e7f 981e3c6 5a73433 981e3c6 3f93878 5a73433 5071575 5a73433 3f93878 5a73433 981e3c6 60bd67d 981e3c6 5a73433 fc46f2c 5a73433 99269bd 5a73433 fc46f2c ab7af41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
import os
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
import numpy as np
from typing import List
model = Llama(
model_path=hf_hub_download(
repo_id=os.environ.get("REPO_ID", "Lyte/QuadConnect2.5-1.5B-v0.1.0b"), #"Lyte/QuadConnect2.5-0.5B-v0.0.9b"),#"Lyte/QuadConnect2.5-0.5B-v0.0.8b"), #"Lyte/QuadConnect2.5-0.5B-v0.0.6b"), #"Lyte/QuadConnect-Llama-1B-v0.0.7b"),#"
filename=os.environ.get("MODEL_FILE", "unsloth.Q8_0.gguf"), #"quadconnect.Q8_0.gguf"),
),
n_ctx=16384
)
SYSTEM_PROMPT = """You are a master Connect Four strategist whose goal is to win while preventing your opponent from winning. The game is played on a 6x7 grid (columns aโg, rows 1โ6 with 1 at the bottom) where pieces drop to the lowest available spot.
Board:
- Represented as a list of occupied cells in the format: <column><row>(<piece>), e.g., 'a1(O)'.
- For example: 'a1(O), a2(X), b1(O)' indicates that cell a1 has an O, a2 has an X, and b1 has an O.
- An empty board is shown as 'Empty Board'.
- Win by connecting 4 pieces in any direction (horizontal, vertical, or diagonal).
Strategy:
1. Identify taken positions, and empty positions.
2. Find and execute winning moves.
3. If There isn't a winning move, then block your opponent's potential wins.
4. Control the center and set up future moves.
Respond in XML:
<reasoning>
Explain your thought process, focusing on your winning move, how you block your opponent, and your strategic plans.
</reasoning>
<move>
Specify the column letter (aโg) for your next move.
</move>
"""
def extract_xml_move(text: str) -> str:
"""
Extracts the move (a single column letter aโg) from the XML format
using an improved regex. This function is kept simple for reuse.
"""
import re
match = re.search(r'<move>\s*([a-g])\s*</move>', text)
if match:
return match.group(1)
return ""
def extract_xml_reasoning(text: str) -> str:
"""
Extracts the reasoning section from the XML format.
"""
import re
match = re.search(r'<reasoning>(.*?)</reasoning>', text, re.DOTALL)
if match:
return match.group(1).strip()
return ""
def convert_moves_to_coordinate_list(moves_list: List[str]) -> str:
"""
Converts a list of moves to a coordinate list representation.
Each move is formatted as <column><row>(<piece>).
Returns "Empty Board" if no moves are present.
"""
# Create an empty 6x7 grid (row 1 is at index 0)
grid = [['.' for _ in range(7)] for _ in range(6)]
for i, move in enumerate(moves_list):
if not move:
continue
col = ord(move[0]) - ord('a')
# Find the lowest available row in this column:
for row in range(6):
if grid[row][col] == '.':
grid[row][col] = 'X' if i % 2 == 0 else 'O'
break
# Build coordinate list: Only include cells with a piece.
coords = []
for row in range(6):
for col in range(7):
if grid[row][col] != '.':
# Convert row index to board row number (row 0 -> 1, etc.)
coords.append(f"{chr(col + ord('a'))}{row+1}({grid[row][col]})")
return ", ".join(coords) if coords else "Empty Board"
def parse_coordinate_list(board_str: str) -> List[List[str]]:
"""
Converts a coordinate list representation (e.g., "a1(O), a2(X), b1(O)")
into a 6x7 grid (list of lists) with row index 0 as the bottom.
"""
grid = [['.' for _ in range(7)] for _ in range(6)]
if not board_str.strip() or board_str == "Empty Board":
return grid
coords = board_str.split(",")
for coord in coords:
coord = coord.strip()
# Expecting format: a1(O)
if len(coord) < 4:
continue
col_letter = coord[0]
try:
row_number = int(coord[1])
except ValueError:
continue
piece = coord[3] # The piece inside the parentheses
col = ord(col_letter) - ord('a')
row = row_number - 1
if 0 <= row < 6 and 0 <= col < 7:
grid[row][col] = piece
return grid
def get_available_positions(board_moves: List[str]) -> str:
"""Returns all available positions per column after simulating gravity."""
# Initialize empty grid ('.' means empty)
grid = [['.' for _ in range(7)] for _ in range(6)]
# Place each move into the lowest available slot in its column
for i, move in enumerate(board_moves):
if not move:
continue
col = ord(move[0]) - ord('a')
for row in range(6):
if grid[row][col] == '.':
grid[row][col] = 'X' if i % 2 == 0 else 'O'
break
# For each column, list all empty positions (which will be above the placed pieces)
available = []
for col in range(7):
col_letter = chr(ord('a') + col)
positions = []
for row in range(6):
if grid[row][col] == '.':
positions.append(f"{col_letter}{row + 1}")
if positions:
available.append(f"Column {col_letter}: {', '.join(positions)}")
else:
available.append(f"Column {col_letter}: Full")
return "\n ".join(available)
class ConnectFour:
def __init__(self):
self.board = np.zeros((6, 7))
self.current_player = 1 # 1 for player (X), 2 for AI (O)
self.game_over = False
self.player_moves = []
self.ai_moves = []
def make_move(self, col):
if self.game_over:
return False, -1
# Find the lowest empty row in the selected column
for row in range(6):
if self.board[row][col] == 0:
self.board[row][col] = self.current_player
# Store the move
col_letter = chr(ord('a') + col)
row_num = row + 1 # Converting to 1-based indexing for the coordinate system
move = f"{col_letter}{row_num}"
if self.current_player == 1:
self.player_moves.append(move)
else:
self.ai_moves.append(move)
return True, row
return False, -1
def check_winner(self):
# Check horizontal
for row in range(6):
for col in range(4):
if (self.board[row][col] != 0 and
self.board[row][col] == self.board[row][col+1] ==
self.board[row][col+2] == self.board[row][col+3]):
return self.board[row][col]
# Check vertical
for row in range(3):
for col in range(7):
if (self.board[row][col] != 0 and
self.board[row][col] == self.board[row+1][col] ==
self.board[row+2][col] == self.board[row+3][col]):
return self.board[row][col]
# Check diagonal (positive slope)
for row in range(3):
for col in range(4):
if (self.board[row][col] != 0 and
self.board[row][col] == self.board[row+1][col+1] ==
self.board[row+2][col+2] == self.board[row+3][col+3]):
return self.board[row][col]
# Check diagonal (negative slope)
for row in range(3, 6):
for col in range(4):
if (self.board[row][col] != 0 and
self.board[row][col] == self.board[row-1][col+1] ==
self.board[row-2][col+2] == self.board[row-3][col+3]):
return self.board[row][col]
return 0
def board_to_string(self):
moves = []
for row in range(6):
for col in range(7):
if self.board[row][col] != 0:
col_letter = chr(ord('a') + col)
row_num = str(row + 1) # Convert to 1-based indexing
piece = "X" if self.board[row][col] == 1 else "O"
moves.append(f"{col_letter}{row_num}({piece})")
return ", ".join(moves) if moves else "Empty Board"
def get_board_moves(self):
"""
Returns a list of all moves made in the game in the format 'a1', 'b2', etc.
This is used for the get_available_positions function.
"""
moves = []
for row in range(6):
for col in range(7):
if self.board[row][col] != 0:
col_letter = chr(ord('a') + col)
row_num = str(row + 1)
moves.append(f"{col_letter}{row_num}")
return moves
def format_game_state(self):
board_str = self.board_to_string()
board_moves = self.get_board_moves()
available_positions = get_available_positions(board_moves)
# Format player and AI moves
player_moves_str = ", ".join(self.player_moves) if self.player_moves else ""
ai_moves_str = ", ".join(self.ai_moves) if self.ai_moves else ""
# Format according to the new template
game_state = f"""Game State:
- You are playing as: O
- Your previous moves: {ai_moves_str}
- Opponent's moves: {player_moves_str}
- Current board state: {board_str}
- Next available position per column:
{available_positions}
Make your move."""
return game_state
def parse_ai_move(self, move_str):
# Parse move like 'a', 'b', etc.
try:
col = ord(move_str.strip().lower()) - ord('a')
if 0 <= col <= 6:
return col
return -1
except:
return -1
def create_interface():
game = ConnectFour()
css = """
.connect4-board {
display: grid;
grid-template-columns: repeat(7, 1fr);
gap: 8px;
max-width: 600px;
margin: 10px auto;
background: #2196F3;
padding: 15px;
border-radius: 15px;
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
}
.connect4-cell {
aspect-ratio: 1;
background: white;
border-radius: 50%;
display: flex;
align-items: center;
justify-content: center;
font-size: 2em;
}
.player1 { background: #f44336 !important; }
.player2 { background: #ffc107 !important; }
#ai-status {
font-size: 1.2em;
margin: 10px 0;
color: #2196F3;
font-weight: bold;
}
#ai-reasoning {
background: #22004d;
border-radius: 10px;
padding: 15px;
margin: 15px 0;
font-family: monospace;
min-height: 100px;
color: white;
}
.reasoning-box {
border-left: 4px solid #2196F3;
padding-left: 15px;
margin: 10px 0;
background: #22004d;
border-radius: 0 10px 10px 0;
color: white;
}
#column-buttons {
display: flex;
justify-content: center;
align-items: anchor-center;
max-width: 600px;
margin: 0 auto;
padding: 0 15px;
}
#column-buttons button {
margin: 0px 5px;
}
div.svelte-1nguped {
display: block;
}
.thinking-indicator {
color: #ffc107;
font-style: italic;
}
.move-highlight {
font-weight: bold;
color: #4CAF50;
}
"""
with gr.Blocks(css=css) as interface:
gr.Markdown("# ๐ฎ Connect Four vs AI")
gr.Markdown("### Play against an AI trained to be an expert Connect Four player!")
with gr.Row():
with gr.Column(scale=2):
# Status display
status = gr.Markdown("Your turn! Click a button to drop your piece!", elem_id="ai-status")
# Column buttons
with gr.Group(elem_id="column-buttons"):
col_buttons = []
for i in range(7):
btn = gr.Button(f"โฌ๏ธ {chr(ord('A') + i)}", scale=1)
col_buttons.append(btn)
# Game board
board_display = gr.HTML(render_board(), elem_id="board-display")
reset_btn = gr.Button("๐ New Game", variant="primary")
with gr.Column(scale=1):
# AI reasoning display
gr.Markdown("### ๐ค AI's Thoughts")
reasoning_display = gr.HTML(
value='<div id="ai-reasoning">Waiting for your move...</div>',
elem_id="ai-reasoning-container"
)
with gr.Row():
temperature_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.8,
step=0.1,
label="Temperature",
info="Lower values make AI more deterministic, higher values more creative"
)
def handle_move(col, temperature=0.8):
if game.game_over:
return [
render_board(game.board),
"Game is over! Click New Game to play again.",
'<div id="ai-reasoning">Game Over!</div>'
]
# Player move
success, row = game.make_move(col)
if not success:
return [
render_board(game.board),
"Column is full! Try another one.",
'<div id="ai-reasoning">Invalid move!</div>'
]
# Check for winner
winner = game.check_winner()
if winner == 1:
game.game_over = True
return [
render_board(game.board),
"๐ You win! ๐",
'<div id="ai-reasoning">Congratulations! You won!</div>'
]
# AI move
game.current_player = 2
# Use the new game state formatting
game_state = game.format_game_state()
# Initialize the reasoning display with a "thinking" message
reasoning_html = '<div id="ai-reasoning"><p class="thinking-indicator">Thinking...</p></div>'
yield [render_board(game.board), "AI is thinking...", reasoning_html]
# Prepare to stream AI's response
full_response = ""
current_reasoning = ""
# Get AI response with streaming
for chunk in model.create_chat_completion(
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": game_state}
],
temperature=temperature,
top_p=0.95,
max_tokens=1024,
stream=True # Enable streaming!
):
if 'choices' in chunk and len(chunk['choices']) > 0:
content = chunk['choices'][0].get('delta', {}).get('content', '')
if content:
full_response += content
# Try to extract current reasoning for display
try:
# Update the displayed reasoning as it comes in
current_reasoning = extract_xml_reasoning(full_response)
if current_reasoning:
# Format reasoning for display
reasoning_html = f'''
<div id="ai-reasoning">
<div class="reasoning-box">
<p><strong>๐ค Reasoning:</strong></p>
<p>{current_reasoning}</p>
<p class="thinking-indicator">Deciding on next move...</p>
</div>
</div>
'''
yield [render_board(game.board), "AI is thinking...", reasoning_html]
except:
# If we can't extract reasoning yet, just show what we have
reasoning_html = f'''
<div id="ai-reasoning">
<div class="reasoning-box">
<p><strong>๐ค Reasoning:</strong></p>
<p class="thinking-indicator">Analyzing the board...</p>
</div>
</div>
'''
yield [render_board(game.board), "AI is thinking...", reasoning_html]
# Process the complete response
try:
reasoning = extract_xml_reasoning(full_response)
move_str = extract_xml_move(full_response)
if not move_str:
raise ValueError("Invalid move format from AI")
ai_col = game.parse_ai_move(move_str)
if ai_col == -1:
raise ValueError("Invalid move format from AI")
# Format final reasoning with move for display
reasoning_html = f'''
<div id="ai-reasoning">
<div class="reasoning-box">
<p><strong>๐ค Reasoning:</strong></p>
<p>{reasoning}</p>
<p><strong>๐ Move chosen:</strong> <span class="move-highlight">Column {move_str.upper()}</span></p>
</div>
</div>
'''
# Make the AI's move
success, _ = game.make_move(ai_col)
if success:
# Check for AI winner
winner = game.check_winner()
if winner == 2:
game.game_over = True
return [
render_board(game.board),
"๐ค AI wins! Better luck next time!",
reasoning_html
]
else:
return [
render_board(game.board),
"AI made invalid move! You win by default!",
'<div id="ai-reasoning">AI made an invalid move!</div>'
]
except Exception as e:
game.game_over = True
return [
render_board(game.board),
"AI error occurred! You win by default!",
f'<div id="ai-reasoning">Error: {str(e)}</div>'
]
game.current_player = 1
return [render_board(game.board), "Your turn!", reasoning_html]
def reset_game():
game.board = np.zeros((6, 7))
game.current_player = 1
game.game_over = False
game.player_moves = []
game.ai_moves = []
return [
render_board(),
"Your turn! Click a button to drop your piece!",
'<div id="ai-reasoning">New game started! Make your move...</div>'
]
# Event handlers
for i, btn in enumerate(col_buttons):
btn.click(
fn=handle_move,
inputs=[
gr.Number(value=i, visible=False),
temperature_slider
],
outputs=[board_display, status, reasoning_display]
)
reset_btn.click(
fn=reset_game,
outputs=[board_display, status, reasoning_display]
)
return interface
def render_board(board=None):
if board is None:
board = np.zeros((6, 7))
html = '<div class="connect4-board">'
# Render from top to bottom to display the board correctly
for row in range(5, -1, -1):
for col in range(7):
cell_class = "connect4-cell"
content = "โช"
if board[row][col] == 1:
cell_class += " player1"
content = "๐ด"
elif board[row][col] == 2:
cell_class += " player2"
content = "๐ก"
html += f'<div class="{cell_class}">{content}</div>'
html += "</div>"
return html
interface = create_interface()
interface.launch() |