File size: 6,861 Bytes
a5686cb
 
 
 
 
 
71ab0a8
bf93486
 
 
19a9d09
 
 
 
 
 
fa7f0c5
a5686cb
6a89c2d
fa7f0c5
a5686cb
 
f3d1657
bf93486
a5686cb
bf93486
 
 
 
a5686cb
bf93486
 
 
1f2a7dc
f3d1657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf93486
a5686cb
 
 
 
 
 
 
 
 
5cba42a
a5686cb
6a89c2d
a5686cb
 
 
 
 
 
 
 
 
 
 
 
 
 
6a89c2d
a5686cb
6a89c2d
a5686cb
 
bf93486
 
 
a5686cb
 
 
 
 
 
bf93486
f3d1657
 
 
 
adfbbbe
bf93486
19a9d09
 
af9539a
 
 
19a9d09
 
af9539a
19a9d09
 
 
af9539a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19a9d09
 
 
 
af9539a
 
 
 
 
 
 
 
 
 
 
12f6ef4
a5686cb
af9539a
19a9d09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9aee46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
from transformers import pipeline
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import EmbeddingRetriever
import numpy as np
import openai
import os
from datasets import load_dataset
from datasets import Dataset
import time
from utils import (
    is_climate_change_related,
    make_pairs,
    set_openai_api_key,
    get_random_string,
)


classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
system_template = {"role": os.environ["role"], "content": os.environ["content"]}


def gen_conv(query: str, report_type, history=[system_template], ipcc=True):
    """return (answer:str, history:list[dict], sources:str)

    Args:
        query (str): _description_
        history (list, optional): _description_. Defaults to [system_template].
        ipcc (bool, optional): _description_. Defaults to True.

    Returns:
        _type_: _description_
    """
    if report_type == "IPCC only":
        document_store = FAISSDocumentStore.load(
            index_path="./documents/climate_gpt_only_giec.faiss",
            config_path="./documents/climate_gpt_only_giec.json",
        )
    else:
        document_store = FAISSDocumentStore.load(
            index_path="./documents/climate_gpt.faiss",
            config_path="./documents/climate_gpt.json",
        )

    dense = EmbeddingRetriever(
        document_store=document_store,
        embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
        model_format="sentence_transformers",
    )

    retrieve = ipcc and is_climate_change_related(query, classifier)

    sources = ""
    messages = history + [
        {"role": "user", "content": query},
    ]

    if retrieve:
        docs = dense.retrieve(query=query, top_k=5)
        sources = "\n\n".join(
            [os.environ["sources"]]
            + [
                f"{d.meta['file_name']} Page {d.meta['page_number']}\n{d.content}"
                for d in docs
            ]
        )
        messages.append({"role": "system", "content": sources})

    answer = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=messages,
        temperature=0.2,
        #         max_tokens=200,
    )["choices"][0]["message"]["content"]

    if retrieve:
        messages.pop()
        # answer = "(top 5 documents retrieved) " + answer
        sources = "\n\n".join(
            f"{d.meta['file_name']} Page {d.meta['page_number']}:\n{d.content}"
            for d in docs
        )
    else:
        sources = "No environmental report was used to provide this answer."

    messages.append({"role": "assistant", "content": answer})
    gradio_format = make_pairs([a["content"] for a in messages[1:]])

    return gradio_format, messages, sources


# Gradio
css_code = ".gradio-container {background-image: url('file=background.png');background-position: top right}"

with gr.Blocks(title="🌍 ClimateGPT Ekimetrics", css=css_code) as demo:

    openai.api_key = os.environ["api_key"]

    user_id = gr.State([get_random_string(10)])

    with gr.Tab("App"):
        gr.Markdown(
            """
            ### Welcome to Climate GPT 🌍 ! 
            \n
            Climate GPT is an interactive exploration tool designed to help you easily find relevant information based on  of Environmental reports such as IPCCs and other environmental reports.
            \n **How does it work:** This Chatbot is a combination of two technologies. FAISS search applied to a vast amount of scientific climate reports and TurboGPT to generate human-like text from the part of the document extracted from the database. 
            \n ⚠️ Warning: Always refer to the source to ensure the validity of the information communicated.
            """
        )
        with gr.Row():
            with gr.Column(scale=2):
                chatbot = gr.Chatbot()
                state = gr.State([system_template])

                with gr.Row():
                    ask = gr.Textbox(
                        show_label=False,
                        placeholder="Enter text and press enter",
                        sample_inputs=["which country polutes the most ?"],
                    ).style(container=False)
                    print(f"Type from ask textbox {ask.type}")

            with gr.Column(scale=1, variant="panel"):
                gr.Markdown("### Sources")
                sources_textbox = gr.Textbox(
                    interactive=False, show_label=False, max_lines=50
                )

        ask.submit(
            fn=gen_conv,
            inputs=[
                ask,
                gr.inputs.Dropdown(
                    ["IPCC only", "All available"],
                    default="All available",
                    label="Select reports",
                ),
                state,
            ],
            outputs=[chatbot, state, sources_textbox],
        )
        with gr.Accordion("Feedbacks", open=False):
            gr.Markdown("Please complete some feedbacks 🙏")

        with gr.Accordion("Add your personal openai api key - Option", open=False):
            openai_api_key_textbox = gr.Textbox(
                placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
                show_label=False,
                lines=1,
                type="password",
            )
        openai_api_key_textbox.change(
            set_openai_api_key, inputs=[openai_api_key_textbox]
        )
        openai_api_key_textbox.submit(
            set_openai_api_key, inputs=[openai_api_key_textbox]
        )

    with gr.Tab("Information"):
        gr.Markdown(
            """
        ## 📖 Reports used : \n
        - First Assessment Report on the Physical Science of Climate Change
        - Second assessment Report on Climate Change Adaptation
        - Third Assessment Report on Climate Change Mitigation
        - Food Outlook Biannual Report on Global Food Markets
        - IEA's report on the Role of Critical Minerals in Clean Energy Transitions
        - Limits to Growth
        - Outside The Safe operating system of the Planetary Boundary for Novel Entities
        - Planetary Boundaries Guiding
        - State of the Oceans report
        - Word Energy Outlook 2021
        - Word Energy Outlook 2022
        - The environmental impacts of plastics and micro plastics use, waste and polution ET=U and national measures
        - IPBES Global report - MArch 2022

        \n
        IPCC is a United Nations body that assesses the science related to climate change, including its impacts and possible response options. 
        The IPCC is considered the leading scientific authority on all things related to global climate change.

        """
        )
    with gr.Tab("Examples"):
        gr.Markdown("See here some examples on how to use the Chatbot")

demo.launch()