Spaces:
Runtime error
Runtime error
File size: 20,703 Bytes
a5686cb f0fc5f8 6d2199d f0fc5f8 780c913 528bf3d 93decd4 528bf3d 93decd4 528bf3d f0fc5f8 ff42e3f 35c9187 ff42e3f 6d2199d ff42e3f f0fc5f8 abfa81d ff42e3f 46e3999 6d2199d f0fc5f8 7498c33 99e2b1f 6d2199d a4595fc 35c9187 f0fc5f8 35c9187 ff42e3f abfa81d 942ee37 abfa81d 787d3cb 35c9187 787d3cb 35c9187 787d3cb abfa81d c974ee5 35c9187 c974ee5 35c9187 c974ee5 35c9187 c974ee5 abfa81d 35c9187 787d3cb 91f77da 787d3cb abfa81d 787d3cb abfa81d 787d3cb f0fc5f8 cc2ce8c f0fc5f8 cc2ce8c f0fc5f8 35c9187 f0fc5f8 787d3cb 35c9187 f0fc5f8 787d3cb f0fc5f8 c974ee5 35c9187 3c9e1e2 3d561c7 f0fc5f8 35c9187 3d561c7 c974ee5 91f77da 780c913 35c9187 780c913 cc2ce8c 780c913 35c9187 3d561c7 91f77da 3d561c7 35c9187 3d561c7 91f77da 3d561c7 35c9187 3d561c7 35c9187 942ee37 3d561c7 35c9187 c974ee5 72c5fd8 35c9187 72c5fd8 01a22be 72c5fd8 01a22be 72c5fd8 3d561c7 35c9187 6570b59 35c9187 3d561c7 35c9187 3d561c7 35c9187 3d561c7 35c9187 3d561c7 35c9187 3d561c7 35c9187 3d561c7 35c9187 3d561c7 35c9187 3d561c7 6d2199d 35c9187 6d2199d 3d561c7 942ee37 3d561c7 35c9187 f0fc5f8 35c9187 ff42e3f 35c9187 f0fc5f8 35c9187 cc2ce8c ff42e3f f0fc5f8 ff42e3f cc2ce8c ff42e3f fdf1622 ff42e3f f0fc5f8 ff42e3f 787d3cb 942ee37 787d3cb 942ee37 f0fc5f8 c974ee5 787d3cb f0fc5f8 c974ee5 3c9e1e2 942ee37 f0fc5f8 942ee37 fa9f031 f0fc5f8 787d3cb 35c9187 bb75389 35c9187 3d561c7 35c9187 3d561c7 35c9187 1558216 35c9187 91f77da fa9f031 35c9187 3c9e1e2 35c9187 3c9e1e2 942ee37 fe19632 942ee37 3c9e1e2 942ee37 3c9e1e2 35c9187 3c9e1e2 35c9187 942ee37 35c9187 780c913 3c9e1e2 35c9187 3c9e1e2 35c9187 3c9e1e2 35c9187 780c913 35c9187 3c9e1e2 35c9187 780c913 35c9187 3c9e1e2 f0fc5f8 35c9187 f0fc5f8 3a575de f0fc5f8 3a575de f0fc5f8 3a575de f0fc5f8 4857c80 3a575de f0fc5f8 3a575de f0fc5f8 3a575de f0fc5f8 3a575de f0fc5f8 3a575de f0fc5f8 3a575de f0fc5f8 3a575de f0fc5f8 3a575de f0fc5f8 3a575de a177bf9 f0fc5f8 35c9187 528bf3d f0fc5f8 35c9187 d271714 56102c0 dace914 942ee37 8161832 f655fb1 35c9187 f655fb1 35c9187 f655fb1 942ee37 3a575de 942ee37 12574b1 35c9187 12574b1 3d561c7 d730458 fa9f031 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import gradio as gr
from utils import create_user_id
# Langchain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# ClimateQ&A imports
from anyqa.config import get_domains
from anyqa.chains import load_qa_chain_with_text, load_reformulation_chain
from anyqa.embeddings import EMBEDDING_MODEL_NAME
from anyqa.llm import get_llm
from anyqa.prompts import audience_prompts
from anyqa.qa_logging import log
from anyqa.retriever import QARetriever
from anyqa.source_table import generate_source_table
from anyqa.vectorstore import get_vectorstore
# Load environment variables in local mode
try:
from dotenv import load_dotenv
load_dotenv()
except Exception as e:
pass
# Set up Gradio Theme
theme = gr.themes.Base(
primary_hue="blue",
secondary_hue="red",
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)
init_prompt = ""
system_template = {
"role": "system",
"content": init_prompt,
}
user_id = create_user_id()
# ---------------------------------------------------------------------------
# ClimateQ&A core functions
# ---------------------------------------------------------------------------
from langchain.callbacks.base import BaseCallbackHandler
from queue import Empty
from threading import Thread
from langchain.schema import LLMResult
from typing import Any, Union, Dict, List
from queue import SimpleQueue
# # Create a Queue
# Q = Queue()
import re
def parse_output_llm_with_sources(output):
# Split the content into a list of text and "[Doc X]" references
content_parts = re.split(r"\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]", output)
parts = []
for part in content_parts:
if part.startswith("Doc"):
subparts = part.split(",")
subparts = [
subpart.lower().replace("doc", "").strip() for subpart in subparts
]
subparts = [
f"<span class='doc-ref'><sup>{subpart}</sup></span>"
for subpart in subparts
]
parts.append("".join(subparts))
else:
parts.append(part)
content_parts = "".join(parts)
return content_parts
job_done = object() # signals the processing is done
class StreamingGradioCallbackHandler(BaseCallbackHandler):
def __init__(self, q: SimpleQueue):
self.q = q
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
"""Run when LLM starts running. Clean the queue."""
while not self.q.empty():
try:
self.q.get(block=False)
except Empty:
continue
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
self.q.put(token)
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Run when LLM ends running."""
self.q.put(job_done)
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
"""Run when LLM errors."""
self.q.put(job_done)
# Create embeddings function and LLM
embeddings_function = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
# Create vectorstore and retriever
vectorstore = get_vectorstore(embeddings_function)
# ---------------------------------------------------------------------------
# ClimateQ&A Streaming
# From https://github.com/gradio-app/gradio/issues/5345
# And https://stackoverflow.com/questions/76057076/how-to-stream-agents-response-in-langchain
# ---------------------------------------------------------------------------
from threading import Thread
def answer_user(query, query_example, history):
if len(query) <= 2:
raise Exception("Please ask a longer question")
return query, history + [[query, ". . ."]]
def answer_user_example(query, query_example, history):
return query_example, history + [[query_example, ". . ."]]
def fetch_sources(query, domains):
llm_reformulation = get_llm(
max_tokens=512, temperature=0.0, verbose=True, streaming=False
)
print("domains", domains)
retriever = QARetriever(
vectorstore=vectorstore, domains=domains, k_summary=0, k_total=10
)
reformulation_chain = load_reformulation_chain(llm_reformulation)
# Calculate language
output_reformulation = reformulation_chain({"query": query})
question = output_reformulation["question"]
language = output_reformulation["language"]
# Retrieve docs
docs = retriever.get_relevant_documents(question)
if len(docs) > 0:
# Already display the sources
sources_text = []
for i, d in enumerate(docs, 1):
sources_text.append(make_html_source(d, i))
citations_text = "".join(sources_text)
docs_text = "\n\n".join([d.page_content for d in docs])
return "", citations_text, docs_text, question, language
else:
sources_text = (
"⚠️ No relevant passages found in the scientific reports (IPCC and IPBES)"
)
citations_text = "**⚠️ No relevant passages found in the sources, you may want to ask a more specific question.**"
docs_text = ""
return "", citations_text, docs_text, question, language
def answer_bot(query, history, docs, question, language, audience):
if audience == "Children":
audience_prompt = audience_prompts["children"]
elif audience == "General public":
audience_prompt = audience_prompts["general"]
elif audience == "Experts":
audience_prompt = audience_prompts["experts"]
else:
audience_prompt = audience_prompts["experts"]
# Prepare Queue for streaming LLMs
Q = SimpleQueue()
llm_streaming = get_llm(
max_tokens=1000,
temperature=0.0,
verbose=True,
streaming=True,
callbacks=[StreamingGradioCallbackHandler(Q), StreamingStdOutCallbackHandler()],
)
qa_chain = load_qa_chain_with_text(llm_streaming)
def threaded_chain(question, audience, language, docs):
try:
response = qa_chain(
{
"question": question,
"audience": audience,
"language": language,
"summaries": docs,
}
)
Q.put(response)
Q.put(job_done)
except Exception as e:
print(e)
history[-1][1] = ""
textbox = gr.Textbox(
placeholder=". . .", show_label=False, scale=1, lines=1, interactive=False
)
if len(docs) > 0:
# Start thread for streaming
thread = Thread(
target=threaded_chain,
kwargs={
"question": question,
"audience": audience_prompt,
"language": language,
"docs": docs,
},
)
thread.start()
while True:
next_item = Q.get(block=True) # Blocks until an input is available
if next_item is job_done:
break
elif isinstance(next_item, str):
new_paragraph = history[-1][1] + next_item
new_paragraph = parse_output_llm_with_sources(new_paragraph)
history[-1][1] = new_paragraph
yield textbox, history
else:
pass
thread.join()
log(question=question, history=history, docs=docs, user_id=user_id)
else:
complete_response = "**⚠️ No relevant passages found in the sources, you may want to ask a more specific question.**"
history[-1][1] += complete_response
yield "", history
# ---------------------------------------------------------------------------
# ClimateQ&A core functions
# ---------------------------------------------------------------------------
def make_html_source(source, i):
meta = source.metadata
content = source.page_content.split(":", 1)[1].strip()
link = (
f'<a href="{meta["url"]}#page={int(meta["page_number"])}" target="_blank" class="pdf-link"><span role="img" aria-label="Open PDF">🔗</span></a>'
if "url" in meta
else ""
)
return f"""
<div class="card">
<div class="card-content">
<h2>Doc {i} - {meta['short_name']} - Page {int(meta['page_number'])}</h2>
<p>{content}</p>
</div>
<div class="card-footer">
<span>{meta['name']}</span>
{link}
</div>
</div>
"""
def reset_textbox():
return gr.update(value="")
# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------
init_prompt = """
Hello, I'm a conversational assistant. I will answer your questions by **sifting through trusted data sources**.
💡 How to use
- **Language**: You can ask me your questions in any language.
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
- **Sources**: You can choose to search in which sources you want me to look for answers. By default, I will search in all sources.
⚠️ Limitations
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*
❓ What do you want to learn ?
"""
def vote(data: gr.LikeData):
if data.liked:
print(data.value)
else:
print(data)
def change_tab():
return gr.Tabs.update(selected=1)
with gr.Blocks(title="❓ Q&A", css="style.css", theme=theme) as demo:
# user_id_state = gr.State([user_id])
with gr.Tab("❓ Q&A"):
with gr.Row(elem_id="chatbot-row"):
with gr.Column(scale=2):
# state = gr.State([system_template])
bot = gr.Chatbot(
value=[[None, init_prompt]],
show_copy_button=True,
show_label=False,
elem_id="chatbot",
layout="panel",
avatar_images=("assets/bot_avatar.png", None),
)
# bot.like(vote,None,None)
with gr.Row(elem_id="input-message"):
textbox = gr.Textbox(
placeholder="Ask me anything here!",
show_label=False,
scale=1,
lines=1,
interactive=True,
max_lines=2
)
# submit_button = gr.Button(">",scale = 1,elem_id = "submit-button")
with gr.Column(scale=1, variant="panel", elem_id="right-panel"):
with gr.Tabs() as tabs:
with gr.TabItem("📝 Examples", elem_id="tab-examples", id=0):
examples_hidden = gr.Textbox(elem_id="hidden-message")
questions = [
"How does Daoism view our dependence on modern technology?",
"From a Confucian perspective, what is the role of tradition in modern society?",
"How might Daoism influence sustainable economic practices?",
"Does Confucianism advocate for a particular economic model?",
"How does Daoism interpret the dynamics of modern relationships?",
"From a Confucian viewpoint, what are the responsibilities of individuals in a family?",
"How might Daoism guide our approach to mental and physical health?",
"Does Confucianism offer insights into educational methods?",
"How does Daoism view the purpose and methods of modern education?",
"From a Confucian perspective, what is the importance of social harmony?",
]
examples_questions = gr.Examples(
questions,
[examples_hidden],
examples_per_page=10,
run_on_click=False,
# cache_examples=True,
)
with gr.Tab("📚 Citations", elem_id="tab-citations", id=1):
sources_textbox = gr.HTML(
show_label=False, elem_id="sources-textbox"
)
docs_textbox = gr.State("")
with gr.Tab("⚙️ Configuration", elem_id="tab-config", id=2):
gr.Markdown(
"Reminder: You can talk in any language, this tool is multi-lingual!"
)
domains = get_domains()
dropdown_domains = gr.CheckboxGroup(
domains,
label="Select source types",
value=[],
interactive=True,
)
dropdown_audience = gr.Dropdown(
["Children", "General public", "Experts"],
label="Select audience",
value="Experts",
interactive=True,
)
output_query = gr.Textbox(
label="Query used for retrieval",
show_label=True,
elem_id="reformulated-query",
lines=2,
interactive=False,
)
output_language = gr.Textbox(
label="Language",
show_label=True,
elem_id="language",
lines=1,
interactive=False,
)
(
textbox.submit(
answer_user,
[textbox, examples_hidden, bot],
[textbox, bot],
queue=False,
)
.success(change_tab, None, tabs)
.success(
fetch_sources,
[textbox, dropdown_domains],
[
textbox,
sources_textbox,
docs_textbox,
output_query,
output_language,
],
)
.success(
answer_bot,
[
textbox,
bot,
docs_textbox,
output_query,
output_language,
dropdown_audience,
],
[textbox, bot],
queue=True,
)
.success(lambda x: textbox, [textbox], [textbox])
)
(
examples_hidden.change(
answer_user_example,
[textbox, examples_hidden, bot],
[textbox, bot],
queue=False,
)
.success(change_tab, None, tabs)
.success(
fetch_sources,
[textbox, dropdown_domains],
[
textbox,
sources_textbox,
docs_textbox,
output_query,
output_language,
],
)
.success(
answer_bot,
[
textbox,
bot,
docs_textbox,
output_query,
output_language,
dropdown_audience,
],
[textbox, bot],
queue=True,
)
.success(lambda x: textbox, [textbox], [textbox])
)
# ---------------------------------------------------------------------------------------
# OTHER TABS
# ---------------------------------------------------------------------------------------
with gr.Tab("ℹ️ About", elem_classes="max-height"):
gr.Markdown(
"""
<div class="tip-box">
<div class="tip-box-title">
<span class="light-bulb" role="img" aria-label="Light Bulb">💡</span>
How does this tool work?
</div>
This tool harnesses modern OCR techniques to parse and preprocess documents. By leveraging state-of-the-art question-answering algorithms, <i>our tool is able to sift through the extensive collection of trusted sources and identify relevant passages in response to user inquiries</i>. Furthermore, the integration of the ChatGPT API allows Q&A to present complex data in a user-friendly manner, summarizing key points and facilitating communication to a wider audience.
</div>
"""
)
gr.Markdown("## How to use")
gr.Markdown(
"""
### 💪 Getting started
- In the chatbot section, simply type your question, and the app will provide an answer with references to relevant sources.
- the app retrieves specific passages to help answer your question accurately.
- Source information, including page numbers and passages, is displayed on the right side of the screen for easy verification.
- Feel free to ask follow-up questions within the chatbot for a more in-depth understanding.
- You can ask question in any language, the tool is multi-lingual !
"""
)
gr.Markdown(
"""
### ⚠️ Limitations
<div class="warning-box">
<ul>
<li>Please note that, like any AI, the model may occasionally generate an inaccurate or imprecise answer. Always refer to the provided sources to verify the validity of the information given. If you find any issues with the response, kindly provide feedback to help improve the system.</li>
</div>
"""
)
with gr.Tab("👩💻 Community"):
gr.Markdown(
"""
We welcomes community contributions.
To participate, head over to the Community Tab and create a "New Discussion" to ask questions and share your insights.
*This tool is a fork from the work done by the R&D lab at **Ekimetrics** for Climate Q&A: https://climateqa.com/.*
"""
)
with gr.Tab("📚 Sources", elem_classes="max-height"):
gr.Markdown(generate_source_table())
with gr.Tab("🛢️ Carbon Footprint"):
gr.Markdown(
"""
Carbon emissions were measured during the development and inference process using CodeCarbon [https://github.com/mlco2/codecarbon](https://github.com/mlco2/codecarbon)
| Phase | Description | Emissions | Source |
| --- | --- | --- | --- |
| Development | OCR and parsing all pdf documents with AI | 28gCO2e | CodeCarbon |
| Development | Question Answering development | 114gCO2e | CodeCarbon |
| Inference | Question Answering | ~0.102gCO2e / call | CodeCarbon |
| Inference | API call to turbo-GPT | ~0.38gCO2e / call | https://medium.com/@chrispointon/the-carbon-footprint-of-chatgpt-e1bc14e4cc2a |
Carbon Emissions are **relatively low but not negligible** compared to other usages: one question asked is around 0.482gCO2e - equivalent to 2.2m by car (https://datagir.ademe.fr/apps/impact-co2/)
Or around 2 to 4 times more than a typical Google search.
"""
)
with gr.Tab("🪄 Changelog"):
gr.Markdown(
"""
##### v1.0.0 - 2023-10-25
- Forked ClimateQ&A
- Added Chroma as vector store
- Added support for OpenAI api
- Added support for other topics
"""
)
demo.queue(concurrency_count=16)
demo.launch()
|