File size: 20,703 Bytes
a5686cb
f0fc5f8
6d2199d
f0fc5f8
 
 
 
 
 
780c913
528bf3d
93decd4
 
528bf3d
93decd4
 
528bf3d
 
f0fc5f8
 
ff42e3f
 
35c9187
ff42e3f
6d2199d
ff42e3f
 
f0fc5f8
abfa81d
 
 
ff42e3f
46e3999
 
6d2199d
f0fc5f8
7498c33
 
 
 
 
99e2b1f
6d2199d
a4595fc
35c9187
f0fc5f8
35c9187
ff42e3f
abfa81d
942ee37
abfa81d
787d3cb
35c9187
787d3cb
35c9187
787d3cb
 
abfa81d
c974ee5
 
35c9187
c974ee5
 
35c9187
c974ee5
 
 
 
35c9187
 
 
 
 
 
 
c974ee5
 
 
 
 
 
abfa81d
35c9187
787d3cb
91f77da
787d3cb
 
abfa81d
 
787d3cb
 
 
 
 
 
 
 
 
 
 
 
abfa81d
 
787d3cb
 
 
 
 
 
 
 
 
 
 
f0fc5f8
cc2ce8c
f0fc5f8
 
cc2ce8c
f0fc5f8
35c9187
f0fc5f8
 
787d3cb
35c9187
f0fc5f8
787d3cb
f0fc5f8
c974ee5
35c9187
3c9e1e2
 
3d561c7
f0fc5f8
35c9187
 
3d561c7
c974ee5
91f77da
780c913
35c9187
 
 
780c913
cc2ce8c
780c913
35c9187
3d561c7
91f77da
3d561c7
35c9187
3d561c7
 
91f77da
3d561c7
 
 
 
 
 
 
 
 
 
35c9187
3d561c7
35c9187
 
 
942ee37
3d561c7
35c9187
c974ee5
72c5fd8
35c9187
72c5fd8
 
 
 
 
01a22be
72c5fd8
01a22be
72c5fd8
3d561c7
 
 
35c9187
6570b59
35c9187
 
 
 
3d561c7
 
 
 
35c9187
3d561c7
35c9187
 
 
 
 
 
 
 
3d561c7
 
 
 
35c9187
3d561c7
 
35c9187
 
 
3d561c7
 
 
 
35c9187
 
 
 
 
 
 
3d561c7
 
 
 
35c9187
3d561c7
 
 
 
 
 
 
35c9187
3d561c7
 
 
6d2199d
35c9187
6d2199d
3d561c7
942ee37
3d561c7
35c9187
 
 
 
f0fc5f8
35c9187
ff42e3f
 
35c9187
f0fc5f8
35c9187
cc2ce8c
 
 
 
 
ff42e3f
 
 
f0fc5f8
 
ff42e3f
 
 
cc2ce8c
ff42e3f
 
 
 
 
fdf1622
 
 
ff42e3f
f0fc5f8
 
 
ff42e3f
 
787d3cb
942ee37
787d3cb
 
 
 
942ee37
f0fc5f8
c974ee5
787d3cb
 
 
 
f0fc5f8
 
c974ee5
 
 
 
 
 
 
3c9e1e2
 
 
 
942ee37
f0fc5f8
 
942ee37
fa9f031
f0fc5f8
 
787d3cb
35c9187
 
 
 
 
bb75389
35c9187
3d561c7
35c9187
3d561c7
35c9187
 
 
 
 
 
 
1558216
35c9187
91f77da
fa9f031
35c9187
3c9e1e2
35c9187
3c9e1e2
942ee37
fe19632
 
 
 
 
 
 
 
 
 
942ee37
 
3c9e1e2
942ee37
3c9e1e2
 
 
 
 
 
35c9187
 
 
 
3c9e1e2
 
35c9187
 
942ee37
35c9187
780c913
 
 
 
 
3c9e1e2
 
 
 
35c9187
3c9e1e2
 
 
 
 
35c9187
 
 
 
 
 
 
 
 
 
 
 
 
 
3c9e1e2
35c9187
 
 
 
 
 
 
 
 
 
780c913
35c9187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c9e1e2
 
35c9187
 
 
 
 
 
 
 
 
 
780c913
35c9187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c9e1e2
f0fc5f8
35c9187
 
 
f0fc5f8
3a575de
 
 
f0fc5f8
 
 
3a575de
f0fc5f8
3a575de
f0fc5f8
4857c80
3a575de
f0fc5f8
3a575de
 
 
f0fc5f8
3a575de
 
f0fc5f8
 
3a575de
f0fc5f8
3a575de
 
 
 
f0fc5f8
 
 
 
 
 
3a575de
f0fc5f8
3a575de
f0fc5f8
 
3a575de
 
 
f0fc5f8
3a575de
a177bf9
f0fc5f8
35c9187
 
528bf3d
f0fc5f8
 
35c9187
 
d271714
 
 
 
 
56102c0
 
dace914
 
 
942ee37
8161832
f655fb1
35c9187
 
f655fb1
35c9187
 
f655fb1
942ee37
 
3a575de
 
 
942ee37
12574b1
35c9187
12574b1
3d561c7
d730458
fa9f031
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import gradio as gr

from utils import create_user_id

# Langchain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

# ClimateQ&A imports
from anyqa.config import get_domains
from anyqa.chains import load_qa_chain_with_text, load_reformulation_chain
from anyqa.embeddings import EMBEDDING_MODEL_NAME
from anyqa.llm import get_llm
from anyqa.prompts import audience_prompts
from anyqa.qa_logging import log
from anyqa.retriever import QARetriever
from anyqa.source_table import generate_source_table
from anyqa.vectorstore import get_vectorstore

# Load environment variables in local mode
try:
    from dotenv import load_dotenv

    load_dotenv()
except Exception as e:
    pass

# Set up Gradio Theme
theme = gr.themes.Base(
    primary_hue="blue",
    secondary_hue="red",
    font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)


init_prompt = ""

system_template = {
    "role": "system",
    "content": init_prompt,
}

user_id = create_user_id()

# ---------------------------------------------------------------------------
# ClimateQ&A core functions
# ---------------------------------------------------------------------------

from langchain.callbacks.base import BaseCallbackHandler
from queue import Empty
from threading import Thread
from langchain.schema import LLMResult
from typing import Any, Union, Dict, List
from queue import SimpleQueue

# # Create a Queue
# Q = Queue()

import re


def parse_output_llm_with_sources(output):
    # Split the content into a list of text and "[Doc X]" references
    content_parts = re.split(r"\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]", output)
    parts = []
    for part in content_parts:
        if part.startswith("Doc"):
            subparts = part.split(",")
            subparts = [
                subpart.lower().replace("doc", "").strip() for subpart in subparts
            ]
            subparts = [
                f"<span class='doc-ref'><sup>{subpart}</sup></span>"
                for subpart in subparts
            ]
            parts.append("".join(subparts))
        else:
            parts.append(part)
    content_parts = "".join(parts)
    return content_parts


job_done = object()  # signals the processing is done


class StreamingGradioCallbackHandler(BaseCallbackHandler):
    def __init__(self, q: SimpleQueue):
        self.q = q

    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Run when LLM starts running. Clean the queue."""
        while not self.q.empty():
            try:
                self.q.get(block=False)
            except Empty:
                continue

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Run on new LLM token. Only available when streaming is enabled."""
        self.q.put(token)

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Run when LLM ends running."""
        self.q.put(job_done)

    def on_llm_error(
        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
    ) -> None:
        """Run when LLM errors."""
        self.q.put(job_done)


# Create embeddings function and LLM
embeddings_function = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)

# Create vectorstore and retriever
vectorstore = get_vectorstore(embeddings_function)

# ---------------------------------------------------------------------------
# ClimateQ&A Streaming
# From https://github.com/gradio-app/gradio/issues/5345
# And https://stackoverflow.com/questions/76057076/how-to-stream-agents-response-in-langchain
# ---------------------------------------------------------------------------

from threading import Thread


def answer_user(query, query_example, history):
    if len(query) <= 2:
        raise Exception("Please ask a longer question")
    return query, history + [[query, ". . ."]]


def answer_user_example(query, query_example, history):
    return query_example, history + [[query_example, ". . ."]]


def fetch_sources(query, domains):
    llm_reformulation = get_llm(
        max_tokens=512, temperature=0.0, verbose=True, streaming=False
    )
    print("domains", domains)
    retriever = QARetriever(
        vectorstore=vectorstore, domains=domains, k_summary=0, k_total=10
    )
    reformulation_chain = load_reformulation_chain(llm_reformulation)

    # Calculate language
    output_reformulation = reformulation_chain({"query": query})
    question = output_reformulation["question"]
    language = output_reformulation["language"]

    # Retrieve docs
    docs = retriever.get_relevant_documents(question)

    if len(docs) > 0:
        # Already display the sources
        sources_text = []
        for i, d in enumerate(docs, 1):
            sources_text.append(make_html_source(d, i))
        citations_text = "".join(sources_text)
        docs_text = "\n\n".join([d.page_content for d in docs])
        return "", citations_text, docs_text, question, language
    else:
        sources_text = (
            "⚠️ No relevant passages found in the scientific reports (IPCC and IPBES)"
        )
        citations_text = "**⚠️ No relevant passages found in the sources, you may want to ask a more specific question.**"
        docs_text = ""
        return "", citations_text, docs_text, question, language


def answer_bot(query, history, docs, question, language, audience):
    if audience == "Children":
        audience_prompt = audience_prompts["children"]
    elif audience == "General public":
        audience_prompt = audience_prompts["general"]
    elif audience == "Experts":
        audience_prompt = audience_prompts["experts"]
    else:
        audience_prompt = audience_prompts["experts"]

    # Prepare Queue for streaming LLMs
    Q = SimpleQueue()

    llm_streaming = get_llm(
        max_tokens=1000,
        temperature=0.0,
        verbose=True,
        streaming=True,
        callbacks=[StreamingGradioCallbackHandler(Q), StreamingStdOutCallbackHandler()],
    )

    qa_chain = load_qa_chain_with_text(llm_streaming)

    def threaded_chain(question, audience, language, docs):
        try:
            response = qa_chain(
                {
                    "question": question,
                    "audience": audience,
                    "language": language,
                    "summaries": docs,
                }
            )
            Q.put(response)
            Q.put(job_done)
        except Exception as e:
            print(e)

    history[-1][1] = ""

    textbox = gr.Textbox(
        placeholder=". . .", show_label=False, scale=1, lines=1, interactive=False
    )

    if len(docs) > 0:
        # Start thread for streaming
        thread = Thread(
            target=threaded_chain,
            kwargs={
                "question": question,
                "audience": audience_prompt,
                "language": language,
                "docs": docs,
            },
        )
        thread.start()

        while True:
            next_item = Q.get(block=True)  # Blocks until an input is available

            if next_item is job_done:
                break
            elif isinstance(next_item, str):
                new_paragraph = history[-1][1] + next_item
                new_paragraph = parse_output_llm_with_sources(new_paragraph)
                history[-1][1] = new_paragraph
                yield textbox, history
            else:
                pass
        thread.join()

        log(question=question, history=history, docs=docs, user_id=user_id)

    else:
        complete_response = "**⚠️ No relevant passages found in the sources, you may want to ask a more specific question.**"
        history[-1][1] += complete_response
        yield "", history


# ---------------------------------------------------------------------------
# ClimateQ&A core functions
# ---------------------------------------------------------------------------


def make_html_source(source, i):
    meta = source.metadata
    content = source.page_content.split(":", 1)[1].strip()
    link = (
        f'<a href="{meta["url"]}#page={int(meta["page_number"])}" target="_blank" class="pdf-link"><span role="img" aria-label="Open PDF">🔗</span></a>'
        if "url" in meta
        else ""
    )
    return f"""
<div class="card">
    <div class="card-content">
        <h2>Doc {i} - {meta['short_name']} - Page {int(meta['page_number'])}</h2>
        <p>{content}</p>
    </div>
    <div class="card-footer">
        <span>{meta['name']}</span>
        {link}
    </div>
</div>
"""


def reset_textbox():
    return gr.update(value="")


# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------


init_prompt = """
Hello, I'm a conversational assistant. I will answer your questions by **sifting through trusted data sources**.

💡 How to use
- **Language**: You can ask me your questions in any language. 
- **Audience**: You can specify your audience (children, general public, experts) to get a more adapted answer.
- **Sources**: You can choose to search in which sources you want me to look for answers. By default, I will search in all sources.

⚠️ Limitations
*Please note that the AI is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*

❓ What do you want to learn ?
"""


def vote(data: gr.LikeData):
    if data.liked:
        print(data.value)
    else:
        print(data)


def change_tab():
    return gr.Tabs.update(selected=1)


with gr.Blocks(title="❓ Q&A", css="style.css", theme=theme) as demo:
    # user_id_state = gr.State([user_id])

    with gr.Tab("❓ Q&A"):
        with gr.Row(elem_id="chatbot-row"):
            with gr.Column(scale=2):
                # state = gr.State([system_template])
                bot = gr.Chatbot(
                    value=[[None, init_prompt]],
                    show_copy_button=True,
                    show_label=False,
                    elem_id="chatbot",
                    layout="panel",
                    avatar_images=("assets/bot_avatar.png", None),
                )

                # bot.like(vote,None,None)

                with gr.Row(elem_id="input-message"):
                    textbox = gr.Textbox(
                        placeholder="Ask me anything here!",
                        show_label=False,
                        scale=1,
                        lines=1,
                        interactive=True,
                        max_lines=2
                    )
                    # submit_button = gr.Button(">",scale = 1,elem_id = "submit-button")

            with gr.Column(scale=1, variant="panel", elem_id="right-panel"):
                with gr.Tabs() as tabs:
                    with gr.TabItem("📝 Examples", elem_id="tab-examples", id=0):
                        examples_hidden = gr.Textbox(elem_id="hidden-message")
                        questions = [
                            "How does Daoism view our dependence on modern technology?",
                            "From a Confucian perspective, what is the role of tradition in modern society?",
                            "How might Daoism influence sustainable economic practices?",
                            "Does Confucianism advocate for a particular economic model?",
                            "How does Daoism interpret the dynamics of modern relationships?",
                            "From a Confucian viewpoint, what are the responsibilities of individuals in a family?",
                            "How might Daoism guide our approach to mental and physical health?",
                            "Does Confucianism offer insights into educational methods?",
                            "How does Daoism view the purpose and methods of modern education?",
                            "From a Confucian perspective, what is the importance of social harmony?",
                        ]

                        examples_questions = gr.Examples(
                            questions,
                            [examples_hidden],
                            examples_per_page=10,
                            run_on_click=False,
                            # cache_examples=True,
                        )

                    with gr.Tab("📚 Citations", elem_id="tab-citations", id=1):
                        sources_textbox = gr.HTML(
                            show_label=False, elem_id="sources-textbox"
                        )
                        docs_textbox = gr.State("")

                    with gr.Tab("⚙️ Configuration", elem_id="tab-config", id=2):
                        gr.Markdown(
                            "Reminder: You can talk in any language, this tool is multi-lingual!"
                        )
                        domains = get_domains()
                        dropdown_domains = gr.CheckboxGroup(
                            domains,
                            label="Select source types",
                            value=[],
                            interactive=True,
                        )

                        dropdown_audience = gr.Dropdown(
                            ["Children", "General public", "Experts"],
                            label="Select audience",
                            value="Experts",
                            interactive=True,
                        )

                        output_query = gr.Textbox(
                            label="Query used for retrieval",
                            show_label=True,
                            elem_id="reformulated-query",
                            lines=2,
                            interactive=False,
                        )
                        output_language = gr.Textbox(
                            label="Language",
                            show_label=True,
                            elem_id="language",
                            lines=1,
                            interactive=False,
                        )

                (
                    textbox.submit(
                        answer_user,
                        [textbox, examples_hidden, bot],
                        [textbox, bot],
                        queue=False,
                    )
                    .success(change_tab, None, tabs)
                    .success(
                        fetch_sources,
                        [textbox, dropdown_domains],
                        [
                            textbox,
                            sources_textbox,
                            docs_textbox,
                            output_query,
                            output_language,
                        ],
                    )
                    .success(
                        answer_bot,
                        [
                            textbox,
                            bot,
                            docs_textbox,
                            output_query,
                            output_language,
                            dropdown_audience,
                        ],
                        [textbox, bot],
                        queue=True,
                    )
                    .success(lambda x: textbox, [textbox], [textbox])
                )

                (
                    examples_hidden.change(
                        answer_user_example,
                        [textbox, examples_hidden, bot],
                        [textbox, bot],
                        queue=False,
                    )
                    .success(change_tab, None, tabs)
                    .success(
                        fetch_sources,
                        [textbox, dropdown_domains],
                        [
                            textbox,
                            sources_textbox,
                            docs_textbox,
                            output_query,
                            output_language,
                        ],
                    )
                    .success(
                        answer_bot,
                        [
                            textbox,
                            bot,
                            docs_textbox,
                            output_query,
                            output_language,
                            dropdown_audience,
                        ],
                        [textbox, bot],
                        queue=True,
                    )
                    .success(lambda x: textbox, [textbox], [textbox])
                )

    # ---------------------------------------------------------------------------------------
    # OTHER TABS
    # ---------------------------------------------------------------------------------------

    with gr.Tab("ℹ️ About", elem_classes="max-height"):
        gr.Markdown(
            """
    <div class="tip-box">
    <div class="tip-box-title">
        <span class="light-bulb" role="img" aria-label="Light Bulb">💡</span>
        How does this tool work?
    </div>
    This tool harnesses modern OCR techniques to parse and preprocess documents. By leveraging state-of-the-art question-answering algorithms, <i>our tool is able to sift through the extensive collection of trusted sources and identify relevant passages in response to user inquiries</i>. Furthermore, the integration of the ChatGPT API allows Q&A to present complex data in a user-friendly manner, summarizing key points and facilitating communication to a wider audience.
    </div>
    """
        )

        gr.Markdown("## How to use")
        gr.Markdown(
            """
        ### 💪 Getting started
        - In the chatbot section, simply type your question, and the app will provide an answer with references to relevant sources.
            - the app retrieves specific passages to help answer your question accurately.
            - Source information, including page numbers and passages, is displayed on the right side of the screen for easy verification.
            - Feel free to ask follow-up questions within the chatbot for a more in-depth understanding.
            - You can ask question in any language, the tool is multi-lingual !
        """
        )

        gr.Markdown(
            """
        ### ⚠️ Limitations
        <div class="warning-box">
        <ul>
            <li>Please note that, like any AI, the model may occasionally generate an inaccurate or imprecise answer. Always refer to the provided sources to verify the validity of the information given. If you find any issues with the response, kindly provide feedback to help improve the system.</li>
        </div>
        """
        )

    with gr.Tab("👩‍💻 Community"):
        gr.Markdown(
            """
        We welcomes community contributions. 
        
        To participate, head over to the Community Tab and create a "New Discussion" to ask questions and share your insights.
        
        *This tool is a fork from the work done by the R&D lab at **Ekimetrics** for Climate Q&A: https://climateqa.com/.*
        """
        )

    with gr.Tab("📚 Sources", elem_classes="max-height"):
        gr.Markdown(generate_source_table())

    with gr.Tab("🛢️ Carbon Footprint"):
        gr.Markdown(
            """

Carbon emissions were measured during the development and inference process using CodeCarbon [https://github.com/mlco2/codecarbon](https://github.com/mlco2/codecarbon)

| Phase | Description | Emissions | Source |
| --- | --- | --- | --- |
| Development  | OCR and parsing all pdf documents with AI | 28gCO2e | CodeCarbon |
| Development | Question Answering development | 114gCO2e | CodeCarbon |
| Inference | Question Answering | ~0.102gCO2e / call | CodeCarbon |
| Inference | API call to turbo-GPT | ~0.38gCO2e / call | https://medium.com/@chrispointon/the-carbon-footprint-of-chatgpt-e1bc14e4cc2a |

Carbon Emissions are **relatively low but not negligible** compared to other usages: one question asked is around 0.482gCO2e - equivalent to 2.2m by car (https://datagir.ademe.fr/apps/impact-co2/)  
Or around 2 to 4 times more than a typical Google search. 
"""
        )

    with gr.Tab("🪄 Changelog"):
        gr.Markdown(
            """

##### v1.0.0 - 2023-10-25

- Forked ClimateQ&A
- Added Chroma as vector store
- Added support for OpenAI api
- Added support for other topics
"""
        )

    demo.queue(concurrency_count=16)

demo.launch()