Spaces:
Runtime error
Runtime error
File size: 32,030 Bytes
a2254b2 1aee8e8 34b9253 92593b8 1aee8e8 595752f 1aee8e8 200a039 a95150e 5ce9ccf 595752f 1aee8e8 595752f 6bd1e51 fe109d5 6bd1e51 1aee8e8 6bd1e51 595752f 9a3d2d0 724395a 1aee8e8 669f5fa 1aee8e8 669f5fa 1aee8e8 595752f 1aee8e8 6bd1e51 1aee8e8 6bd1e51 a95150e 093f4ca 200a039 3991d1f 1aee8e8 fe109d5 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 669f5fa 5ce9ccf 1aee8e8 5ce9ccf 1aee8e8 595752f aade75b 1aee8e8 595752f 1aee8e8 595752f 1aee8e8 5ce9ccf 1aee8e8 5ce9ccf 1aee8e8 5ce9ccf 1aee8e8 5ce9ccf 1aee8e8 5ce9ccf 1aee8e8 5ce9ccf 1aee8e8 5ce9ccf 1aee8e8 5ce9ccf 595752f 1aee8e8 5ce9ccf 1aee8e8 a2254b2 1aee8e8 a2254b2 1aee8e8 a2254b2 1aee8e8 a2254b2 1aee8e8 a2254b2 1aee8e8 34b9253 1aee8e8 34b9253 5ce9ccf bbd3488 5ce9ccf bbd3488 5ce9ccf d383ced 5ce9ccf bbd3488 5ce9ccf bbd3488 200a039 3991d1f 200a039 724395a 3991d1f 724395a a95150e 3991d1f a95150e 3991d1f a95150e 3991d1f a95150e 3991d1f 200a039 a95150e 200a039 3991d1f 200a039 3991d1f 724395a 3991d1f 724395a a95150e 724395a 200a039 3991d1f 200a039 a95150e 3991d1f a95150e 200a039 a95150e 3991d1f 200a039 bbd3488 200a039 bbd3488 5ce9ccf bbd3488 5ce9ccf 093f4ca 5ce9ccf bbd3488 200a039 3991d1f a95150e 200a039 bbd3488 a2254b2 bbd3488 669f5fa bbd3488 a2254b2 bbd3488 a2254b2 bbd3488 a2254b2 bbd3488 a2254b2 bbd3488 a2254b2 bbd3488 a2254b2 bbd3488 a2254b2 bbd3488 a2254b2 bbd3488 a2254b2 9a3d2d0 a95150e 200a039 bbd3488 5ce9ccf bbd3488 5ce9ccf a2254b2 5ce9ccf bbd3488 5ce9ccf a95150e bbd3488 a95150e bbd3488 a95150e bbd3488 9a3d2d0 bbd3488 a95150e 9a3d2d0 bbd3488 a95150e bbd3488 a95150e bbd3488 a95150e bbd3488 a95150e 9a3d2d0 200a039 d1ec28b a2254b2 d1ec28b bbd3488 a95150e d1ec28b a95150e 9a3d2d0 d1ec28b a95150e d1ec28b 200a039 a95150e 200a039 9a3d2d0 d1ec28b bbd3488 a95150e 3991d1f a95150e 3991d1f a95150e bbd3488 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 |
"""
LocaleNLP Translation Service
============================
A multi-language translation application supporting English, Wolof, Hausa, and Darija.
Features text, audio, and document translation with automatic chaining for all language pairs.
Author: LocaleNLP
"""
import os
import re
import logging
import tempfile
import csv
import requests
import json
from typing import Optional, Dict, Tuple, Any, Union
from pathlib import Path
from dataclasses import dataclass
from enum import Enum
import gradio as gr
import torch
import whisper
import fitz # PyMuPDF
import docx
from bs4 import BeautifulSoup
from markdown import markdown
import chardet
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
from huggingface_hub import login
import base64
# ================================
# Configuration & Constants
# ================================
class Language(str, Enum):
"""Supported languages for translation."""
ENGLISH = "English"
WOLOF = "Wolof"
HAUSA = "Hausa"
DARIJA = "Darija"
SWAHILI = "Swahili"
BAMBARA = "Bambara"
class InputMode(str, Enum):
"""Supported input modes."""
TEXT = "Text"
AUDIO = "Audio"
FILE = "File"
@dataclass
class ModelConfig:
"""Configuration for translation models."""
model_name: str
language_tag: str
# Language pair configurations
TRANSLATION_MODELS: Dict[Tuple[Language, Language], ModelConfig] = {
(Language.ENGLISH, Language.WOLOF): ModelConfig(
"LocaleNLP/localenlp-eng-wol-0.03", ">>wol<<"
),
(Language.WOLOF, Language.ENGLISH): ModelConfig(
"LocaleNLP/localenlp-wol-eng-0.03", ">>eng<<"
),
(Language.ENGLISH, Language.HAUSA): ModelConfig(
"LocaleNLP/localenlp-eng-hau-0.01", ">>hau<<"
),
(Language.HAUSA, Language.ENGLISH): ModelConfig(
"LocaleNLP/localenlp-hau-eng-0.01", ">>eng<<"
),
(Language.ENGLISH, Language.DARIJA): ModelConfig(
"LocaleNLP/english_darija", ">>dar<<"
),
(Language.ENGLISH, Language.BAMBARA): ModelConfig(
"LocaleNLP/localenlp-eng-bam-0.03", ">>bam<<"
),
(Language.BAMBARA, Language.ENGLISH): ModelConfig(
"LocaleNLP/localenlp-bam-eng-0.03", ">>eng<<"
),
(Language.SWAHILI, Language.ENGLISH): ModelConfig(
"LocaleNLP/localenlp-swa-eng-0.03", ">>eng<<"
),
(Language.ENGLISH, Language.SWAHILI): ModelConfig(
"LocaleNLP/localenlp-eng-swa-0.03", ">>swa<<"
),
}
# File type support
SUPPORTED_FILE_TYPES = [
".pdf", ".docx", ".html", ".htm", ".md",
".srt", ".txt", ".text"
]
# Audio file extensions
AUDIO_EXTENSIONS = [".wav", ".mp3", ".m4a"]
# GitHub repository details
GITHUB_REPO = "mgolomanta/Models_Evaluation"
EVALUATION_FILE = "evaluation.csv"
GITHUB_TOKEN = os.getenv("git_tk")
# Local fallback file
LOCAL_EVALUATION_FILE = "evaluation.csv"
# ================================
# Logging Configuration
# ================================
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# ================================
# Model Management
# ================================
class ModelManager:
"""Centralized model management for translation and transcription."""
def __init__(self):
self._translation_pipeline = None
self._whisper_model = None
self._current_model_name = None
def get_translation_pipeline(
self,
source_lang: Language,
target_lang: Language
) -> Tuple[Any, str]:
"""
Load and return translation pipeline for given language pair.
Args:
source_lang: Source language
target_lang: Target language
Returns:
Tuple of (pipeline, language_tag)
Raises:
ValueError: If language pair is not supported
"""
key = (source_lang, target_lang)
if key not in TRANSLATION_MODELS:
raise ValueError(f"Unsupported translation pair: {source_lang} -> {target_lang}")
config = TRANSLATION_MODELS[key]
# Load model if not loaded or different model needed
if (self._translation_pipeline is None or
self._current_model_name != config.model_name):
logger.info(f"Loading translation model: {config.model_name}")
# Authenticate with Hugging Face if token provided
if hf_token := os.getenv("final_tk"):
login(token=hf_token)
model = AutoModelForSeq2SeqLM.from_pretrained(
config.model_name,
token=hf_token
).to(self._get_device())
tokenizer = MarianTokenizer.from_pretrained(
config.model_name,
token=hf_token
)
self._translation_pipeline = pipeline(
"translation",
model=model,
tokenizer=tokenizer,
device=0 if self._get_device().type == "cuda" else -1
)
self._current_model_name = config.model_name
return self._translation_pipeline, config.language_tag
def get_whisper_model(self) -> Any:
"""
Load and return Whisper transcription model.
Returns:
Whisper model instance
"""
if self._whisper_model is None:
logger.info("Loading Whisper base model...")
self._whisper_model = whisper.load_model("large")
return self._whisper_model
def _get_device(self) -> torch.device:
"""Get appropriate device for model execution."""
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ================================
# Content Processing
# ================================
class ContentProcessor:
"""Handles extraction and processing of content from various sources."""
@staticmethod
def extract_text_from_file(file_path: Union[str, Path]) -> str:
"""
Extract text content from various file formats.
Args:
file_path: Path to the file
Returns:
Extracted text content
Raises:
ValueError: If file type is unsupported
Exception: If file processing fails
"""
file_path = Path(file_path)
extension = file_path.suffix.lower()
try:
content = file_path.read_bytes()
if extension == ".pdf":
return ContentProcessor._extract_pdf_text(content)
elif extension == ".docx":
return ContentProcessor._extract_docx_text(file_path)
elif extension in (".html", ".htm"):
return ContentProcessor._extract_html_text(content)
elif extension == ".md":
return ContentProcessor._extract_markdown_text(content)
elif extension == ".srt":
return ContentProcessor._extract_srt_text(content)
elif extension in (".txt", ".text"):
return ContentProcessor._extract_plain_text(content)
else:
raise ValueError(f"Unsupported file type: {extension}")
except Exception as e:
logger.error(f"Failed to extract text from {file_path}: {e}")
raise
@staticmethod
def _extract_pdf_text(content: bytes) -> str:
"""Extract text from PDF file."""
with fitz.open(stream=content, filetype="pdf") as doc:
return "\n".join(page.get_text() for page in doc)
@staticmethod
def _extract_docx_text(file_path: Path) -> str:
"""Extract text from DOCX file."""
doc = docx.Document(str(file_path))
return "\n".join(paragraph.text for paragraph in doc.paragraphs)
@staticmethod
def _extract_html_text(content: bytes) -> str:
"""Extract text from HTML file."""
encoding = chardet.detect(content)["encoding"] or "utf-8"
text = content.decode(encoding, errors="ignore")
soup = BeautifulSoup(text, "html.parser")
return soup.get_text()
@staticmethod
def _extract_markdown_text(content: bytes) -> str:
"""Extract text from Markdown file."""
encoding = chardet.detect(content)["encoding"] or "utf-8"
text = content.decode(encoding, errors="ignore")
html = markdown(text)
soup = BeautifulSoup(html, "html.parser")
return soup.get_text()
@staticmethod
def _extract_srt_text(content: bytes) -> str:
"""Extract text from SRT subtitle file."""
encoding = chardet.detect(content)["encoding"] or "utf-8"
text = content.decode(encoding, errors="ignore")
# Remove timestamp lines
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", text)
@staticmethod
def _extract_plain_text(content: bytes) -> str:
"""Extract text from plain text file."""
encoding = chardet.detect(content)["encoding"] or "utf-8"
return content.decode(encoding, errors="ignore")
# ================================
# Translation Service
# ================================
class TranslationService:
"""Core translation service with advanced processing capabilities."""
def __init__(self, model_manager: ModelManager):
self.model_manager = model_manager
def translate(
self,
text: str,
source_lang: Language,
target_lang: Language
) -> str:
"""
Translate text from source to target language with automatic chaining.
Args:
text: Input text to translate
source_lang: Source language
target_lang: Target language
Returns:
Translated text
"""
if not text.strip():
return "No input text to translate."
# Direct translation if model exists
if (source_lang, target_lang) in TRANSLATION_MODELS:
return self._direct_translate(text, source_lang, target_lang)
# Automatic chaining through English
return self._chained_translate(text, source_lang, target_lang)
def _direct_translate(
self,
text: str,
source_lang: Language,
target_lang: Language
) -> str:
"""Perform direct translation using available model."""
pipeline_obj, lang_tag = self.model_manager.get_translation_pipeline(
source_lang, target_lang
)
return self._process_text_with_pipeline(text, pipeline_obj, lang_tag)
def _chained_translate(
self,
text: str,
source_lang: Language,
target_lang: Language
) -> str:
"""
Perform chained translation through English as intermediate language.
Args:
text: Input text to translate
source_lang: Source language
target_lang: Target language
Returns:
Translated text through chaining
"""
# First: source_lang -> English
intermediate_text = self._direct_translate(
text, source_lang, Language.ENGLISH
)
# Second: English -> target_lang
final_text = self._direct_translate(
intermediate_text, Language.ENGLISH, target_lang
)
return final_text
def _process_text_with_pipeline(
self,
text: str,
pipeline_obj: Any,
lang_tag: str
) -> str:
"""Process text using translation pipeline."""
# Process text in paragraphs
paragraphs = text.splitlines()
translated_paragraphs = []
with torch.no_grad():
for paragraph in paragraphs:
if not paragraph.strip():
translated_paragraphs.append("")
continue
# Split into sentences and translate
sentences = [
s.strip() for s in paragraph.split(". ")
if s.strip()
]
# Add language tag to each sentence
formatted_sentences = [
f"{lang_tag} {sentence}"
for sentence in sentences
]
# Perform translation
results = pipeline_obj(
formatted_sentences,
max_length=10000,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=3,
repetition_penalty=1.5,
length_penalty=1.2
)
# Process results
translated_sentences = [
result["translation_text"].capitalize()
for result in results
]
translated_paragraphs.append(". ".join(translated_sentences))
return "\n".join(translated_paragraphs)
# ================================
# Audio Processing
# ================================
class AudioProcessor:
"""Handles audio file transcription using Whisper."""
def __init__(self, model_manager: ModelManager):
self.model_manager = model_manager
def transcribe(self, audio_file_path: str) -> str:
"""
Transcribe audio file to text.
Args:
audio_file_path: Path to audio file
Returns:
Transcribed text
"""
model = self.model_manager.get_whisper_model()
result = model.transcribe(audio_file_path)
return result["text"]
# ================================
# Evaluation Service
# ================================
class EvaluationService:
"""Handles evaluation submissions with GitHub and local fallback."""
@staticmethod
def escape_csv_field(text):
"""Escape text for CSV format."""
if text is None:
return ""
text = str(text)
if '"' in text:
text = text.replace('"', '""')
if ',' in text or '"' in text or '\n' in text:
text = f'"{text}"'
return text
@staticmethod
def ensure_local_csv_exists():
"""Ensure local CSV file exists with headers."""
if not os.path.exists(LOCAL_EVALUATION_FILE):
headers = "source_language_name,target_language_name,user_input,model_output,notation_value,correct_answer\n"
with open(LOCAL_EVALUATION_FILE, 'w', encoding='utf-8', newline='') as f:
f.write(headers)
@staticmethod
def save_evaluation_locally(
source_lang: str,
target_lang: str,
user_input: str,
model_output: str,
notation: Optional[str] = None,
correct_answer: Optional[str] = None
) -> str:
"""Save evaluation to local CSV file."""
try:
# Ensure file exists with headers
EvaluationService.ensure_local_csv_exists()
# Escape fields for CSV
source_lang_escaped = EvaluationService.escape_csv_field(source_lang)
target_lang_escaped = EvaluationService.escape_csv_field(target_lang)
user_input_escaped = EvaluationService.escape_csv_field(user_input)
model_output_escaped = EvaluationService.escape_csv_field(model_output)
notation_escaped = EvaluationService.escape_csv_field(notation)
correct_answer_escaped = EvaluationService.escape_csv_field(correct_answer)
# Prepare the new evaluation data
new_row = f"{source_lang_escaped},{target_lang_escaped},{user_input_escaped},{model_output_escaped},{notation_escaped},{correct_answer_escaped}\n"
# Append to file
with open(LOCAL_EVALUATION_FILE, 'a', encoding='utf-8', newline='') as f:
f.write(new_row)
return "✅ Evaluation saved locally!"
except Exception as e:
logger.error(f"Failed to save evaluation locally: {e}")
return f"❌ Error saving evaluation locally: {str(e)}"
@staticmethod
def save_evaluation_to_github(
source_lang: str,
target_lang: str,
user_input: str,
model_output: str,
notation: Optional[str] = None,
correct_answer: Optional[str] = None
) -> str:
"""
Save evaluation to GitHub CSV file with fallback to local storage.
Args:
source_lang: Source language name
target_lang: Target language name
user_input: User input text
model_output: Model output text
notation: Optional notation value
correct_answer: Optional correct answer
Returns:
Status message
"""
try:
# First try to save to GitHub
if not GITHUB_TOKEN:
# Fallback to local if no token
return EvaluationService.save_evaluation_locally(
source_lang, target_lang, user_input, model_output, notation, correct_answer
)
# Escape fields for CSV
source_lang_escaped = EvaluationService.escape_csv_field(source_lang)
target_lang_escaped = EvaluationService.escape_csv_field(target_lang)
user_input_escaped = EvaluationService.escape_csv_field(user_input)
model_output_escaped = EvaluationService.escape_csv_field(model_output)
notation_escaped = EvaluationService.escape_csv_field(notation)
correct_answer_escaped = EvaluationService.escape_csv_field(correct_answer)
# Prepare the new evaluation data
new_row = f"{source_lang_escaped},{target_lang_escaped},{user_input_escaped},{model_output_escaped},{notation_escaped},{correct_answer_escaped}\n"
# Try to read existing content from GitHub
existing_content = ""
file_sha = None
try:
url = f"https://api.github.com/repos/{GITHUB_REPO}/contents/{EVALUATION_FILE}"
headers = {
"Authorization": f"token {GITHUB_TOKEN}",
"Accept": "application/vnd.github.v3+json"
}
response = requests.get(url, headers=headers)
if response.status_code == 200:
file_data = response.json()
file_sha = file_data.get("sha")
content = file_data.get("content", "")
existing_content = base64.b64decode(content).decode('utf-8')
except Exception as e:
logger.warning(f"Could not read existing GitHub file: {e}")
# Check if file exists and has headers
if existing_content.strip():
# File exists, append new row
csv_content = existing_content + new_row
else:
# File doesn't exist, create with headers
headers = "source_language_name,target_language_name,user_input,model_output,notation_value,correct_answer\n"
csv_content = headers + new_row
# Encode content for GitHub API
content_encoded = base64.b64encode(csv_content.encode('utf-8')).decode('utf-8')
# Prepare GitHub API request
url = f"https://api.github.com/repos/{GITHUB_REPO}/contents/{EVALUATION_FILE}"
headers = {
"Authorization": f"token {GITHUB_TOKEN}",
"Accept": "application/vnd.github.v3+json"
}
# Prepare payload
payload = {
"message": "Add new evaluation",
"content": content_encoded
}
# Add SHA if file exists (for update)
if file_sha:
payload["sha"] = file_sha
# Send request to GitHub API
response = requests.put(url, headers=headers, json=payload)
if response.status_code in [200, 201]:
return "✅ Evaluation submitted successfully to GitHub!"
else:
logger.error(f"GitHub API error: {response.status_code} - {response.text}")
# Fallback to local storage
return EvaluationService.save_evaluation_locally(
source_lang, target_lang, user_input, model_output, notation, correct_answer
)
except Exception as e:
logger.error(f"Failed to save evaluation to GitHub: {e}")
# Fallback to local storage
return EvaluationService.save_evaluation_locally(
source_lang, target_lang, user_input, model_output, notation, correct_answer
)
# ================================
# Main Application
# ================================
class TranslationApp:
"""Main application orchestrating all components."""
def __init__(self):
self.model_manager = ModelManager()
self.content_processor = ContentProcessor()
self.translation_service = TranslationService(self.model_manager)
self.audio_processor = AudioProcessor(self.model_manager)
self.evaluation_service = EvaluationService()
def process_input(
self,
mode: InputMode,
source_lang: Language,
text_input: str,
audio_file: Optional[str],
file_obj: Optional[gr.FileData]
) -> str:
"""
Process input based on selected mode.
Args:
mode: Input mode
source_lang: Source language
text_input: Text input
audio_file: Audio file path
file_obj: Uploaded file object
Returns:
Processed text content
"""
if mode == InputMode.TEXT:
return text_input
elif mode == InputMode.AUDIO:
#if source_lang != Language.ENGLISH:
# raise ValueError("Audio input must be in English.")
if not audio_file:
raise ValueError("No audio file provided.")
return self.audio_processor.transcribe(audio_file)
elif mode == InputMode.FILE:
if not file_obj:
raise ValueError("No file uploaded.")
return self.content_processor.extract_text_from_file(file_obj.name)
return ""
def submit_evaluation(
self,
source_lang: str,
target_lang: str,
user_input: str,
model_output: str,
notation: Optional[str],
correct_answer: Optional[str]
) -> str:
"""Submit evaluation data."""
if not user_input.strip() or not model_output.strip():
return "⚠️ Please translate text before submitting evaluation."
return self.evaluation_service.save_evaluation_to_github(
source_lang, target_lang, user_input, model_output, notation, correct_answer
)
def create_interface(self) -> gr.Blocks:
"""Create and return the Gradio interface."""
with gr.Blocks(
title="LocaleNLP Translation Service",
theme=gr.themes.Monochrome()
) as interface:
# Header
gr.Markdown("""
# 🌍 LocaleNLP Translation Service
Translate between English, Wolof, Hausa,Bambara, Swahili and Darija with support for text, audio, and documents.
""")
# Input controls
with gr.Row():
input_mode = gr.Radio(
choices=[mode.value for mode in InputMode],
label="Input Type",
value=InputMode.TEXT.value
)
input_lang = gr.Dropdown(
choices=[lang.value for lang in Language],
label="Input Language",
value=Language.ENGLISH.value
)
output_lang = gr.Dropdown(
choices=[lang.value for lang in Language],
label="Output Language",
value=Language.WOLOF.value
)
# Input components
input_text = gr.Textbox(
label="Enter Text",
lines=8,
visible=True,
placeholder="Type or paste your text here..."
)
audio_input = gr.Audio(
label="Upload Audio",
type="filepath",
visible=False
)
file_input = gr.File(
file_types=SUPPORTED_FILE_TYPES,
label="Upload Document",
visible=False
)
# Processing area
extracted_text = gr.Textbox(
label="Extracted / Transcribed Text",
lines=8,
interactive=False
)
translate_btn = gr.Button(
"🔄 Process & Translate",
variant="secondary"
)
output_text = gr.Textbox(
label="Translated Text",
lines=10,
interactive=False
)
# Store the last translation data for evaluation
last_input_state = gr.State("")
last_output_state = gr.State("")
# Evaluation section
gr.Markdown("### 📝 Model Evaluation")
with gr.Group():
with gr.Row():
notation = gr.Radio(
choices=["1", "2", "3", "4", "5"],
label="Notation (1-5 stars)",
value=None
)
correct_translation = gr.Textbox(
label="Correct Translation (if incorrect)",
lines=3,
placeholder="Enter the correct translation if the model output is wrong..."
)
submit_evaluation_btn = gr.Button("Submit Evaluation", variant="primary")
evaluation_status = gr.Textbox(
label="Evaluation Status",
interactive=False
)
# Event handlers
def update_visibility(mode: str) -> Dict[str, Any]:
"""Update component visibility based on input mode."""
return {
input_text: gr.update(visible=(mode == InputMode.TEXT.value)),
audio_input: gr.update(visible=(mode == InputMode.AUDIO.value)),
file_input: gr.update(visible=(mode == InputMode.FILE.value)),
extracted_text: gr.update(value="", visible=True),
output_text: gr.update(value="")
}
def handle_process(
mode: str,
source_lang: str,
text_input: str,
audio_file: Optional[str],
file_obj: Optional[gr.FileData]
) -> Tuple[str, str, str, str]:
"""Handle initial input processing."""
try:
processed_text = self.process_input(
InputMode(mode),
Language(source_lang),
text_input,
audio_file,
file_obj
)
return processed_text, "", processed_text, ""
except Exception as e:
logger.error(f"Processing error: {e}")
return "", f"❌ Error: {str(e)}", "", ""
def handle_translate(
extracted_text: str,
source_lang: str,
target_lang: str
) -> Tuple[str, str, str]:
"""Handle translation of processed text."""
if not extracted_text.strip():
return "📝 No text to translate.", extracted_text, ""
try:
result = self.translation_service.translate(
extracted_text,
Language(source_lang),
Language(target_lang)
)
return result, extracted_text, result
except Exception as e:
logger.error(f"Translation error: {e}")
return f"❌ Translation error: {str(e)}", extracted_text, ""
def handle_evaluation(
source_lang: str,
target_lang: str,
user_input: str,
model_output: str,
notation_value: Optional[str],
correct_answer: Optional[str]
) -> str:
"""Handle evaluation submission."""
return self.submit_evaluation(
source_lang,
target_lang,
user_input,
model_output,
notation_value,
correct_answer
)
# Connect events
input_mode.change(
fn=update_visibility,
inputs=input_mode,
outputs=[input_text, audio_input, file_input, extracted_text, output_text]
)
process_result = translate_btn.click(
fn=handle_process,
inputs=[input_mode, input_lang, input_text, audio_input, file_input],
outputs=[extracted_text, output_text, last_input_state, last_output_state]
).then(
fn=handle_translate,
inputs=[extracted_text, input_lang, output_lang],
outputs=[output_text, last_input_state, last_output_state]
)
submit_evaluation_btn.click(
fn=handle_evaluation,
inputs=[
input_lang,
output_lang,
last_input_state,
last_output_state,
notation,
correct_translation
],
outputs=evaluation_status
)
return interface
# ================================
# Application Entry Point
# ================================
def main():
"""Main application entry point."""
# Check if GitHub token is set
if not os.getenv("git_tk"):
logger.warning("GITHUB_TOKEN environment variable not set. Evaluations will be saved locally.")
print("⚠️ WARNING: GITHUB_TOKEN environment variable not set!")
print(" Evaluations will be saved to local file only.")
try:
app = TranslationApp()
interface = app.create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=int(os.getenv("PORT", 7860)),
share=False
)
except Exception as e:
logger.critical(f"Failed to start application: {e}")
raise
if __name__ == "__main__":
main() |