Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
"""
|
| 2 |
LocaleNLP Translation Service
|
| 3 |
============================
|
|
|
|
| 4 |
A multi-language translation application supporting English, Wolof, Hausa, and Darija.
|
| 5 |
Features text, audio, and document translation with automatic chaining for all language pairs.
|
|
|
|
| 6 |
Author: LocaleNLP
|
| 7 |
"""
|
| 8 |
|
|
@@ -10,7 +12,7 @@ import os
|
|
| 10 |
import re
|
| 11 |
import logging
|
| 12 |
import tempfile
|
| 13 |
-
from typing import Optional, Dict, Tuple, Any, Union
|
| 14 |
from pathlib import Path
|
| 15 |
from dataclasses import dataclass
|
| 16 |
from enum import Enum
|
|
@@ -131,33 +133,26 @@ class ModelManager:
|
|
| 131 |
|
| 132 |
# Authenticate with Hugging Face if token provided
|
| 133 |
if hf_token := os.getenv("hffff"):
|
| 134 |
-
|
| 135 |
-
login(token=hf_token)
|
| 136 |
-
except Exception as e:
|
| 137 |
-
logger.warning(f"HF login failed: {e}")
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
self._current_model_name = config.model_name
|
| 158 |
-
except Exception as e:
|
| 159 |
-
logger.error(f"Failed to load model {config.model_name}: {e}")
|
| 160 |
-
raise
|
| 161 |
|
| 162 |
return self._translation_pipeline, config.language_tag
|
| 163 |
|
|
@@ -170,11 +165,7 @@ class ModelManager:
|
|
| 170 |
"""
|
| 171 |
if self._whisper_model is None:
|
| 172 |
logger.info("Loading Whisper base model...")
|
| 173 |
-
|
| 174 |
-
self._whisper_model = whisper.load_model("base")
|
| 175 |
-
except Exception as e:
|
| 176 |
-
logger.error(f"Failed to load Whisper model: {e}")
|
| 177 |
-
raise
|
| 178 |
return self._whisper_model
|
| 179 |
|
| 180 |
def _get_device(self) -> torch.device:
|
|
@@ -207,18 +198,20 @@ class ContentProcessor:
|
|
| 207 |
extension = file_path.suffix.lower()
|
| 208 |
|
| 209 |
try:
|
|
|
|
|
|
|
| 210 |
if extension == ".pdf":
|
| 211 |
-
return ContentProcessor._extract_pdf_text(
|
| 212 |
elif extension == ".docx":
|
| 213 |
return ContentProcessor._extract_docx_text(file_path)
|
| 214 |
elif extension in (".html", ".htm"):
|
| 215 |
-
return ContentProcessor._extract_html_text(
|
| 216 |
elif extension == ".md":
|
| 217 |
-
return ContentProcessor._extract_markdown_text(
|
| 218 |
elif extension == ".srt":
|
| 219 |
-
return ContentProcessor._extract_srt_text(
|
| 220 |
elif extension in (".txt", ".text"):
|
| 221 |
-
return ContentProcessor._extract_plain_text(
|
| 222 |
else:
|
| 223 |
raise ValueError(f"Unsupported file type: {extension}")
|
| 224 |
|
|
@@ -227,30 +220,28 @@ class ContentProcessor:
|
|
| 227 |
raise
|
| 228 |
|
| 229 |
@staticmethod
|
| 230 |
-
def _extract_pdf_text(
|
| 231 |
"""Extract text from PDF file."""
|
| 232 |
-
with fitz.open(
|
| 233 |
return "\n".join(page.get_text() for page in doc)
|
| 234 |
|
| 235 |
@staticmethod
|
| 236 |
def _extract_docx_text(file_path: Path) -> str:
|
| 237 |
"""Extract text from DOCX file."""
|
| 238 |
-
doc = docx.Document(file_path)
|
| 239 |
return "\n".join(paragraph.text for paragraph in doc.paragraphs)
|
| 240 |
|
| 241 |
@staticmethod
|
| 242 |
-
def _extract_html_text(
|
| 243 |
"""Extract text from HTML file."""
|
| 244 |
-
content = file_path.read_bytes()
|
| 245 |
encoding = chardet.detect(content)["encoding"] or "utf-8"
|
| 246 |
text = content.decode(encoding, errors="ignore")
|
| 247 |
soup = BeautifulSoup(text, "html.parser")
|
| 248 |
return soup.get_text()
|
| 249 |
|
| 250 |
@staticmethod
|
| 251 |
-
def _extract_markdown_text(
|
| 252 |
"""Extract text from Markdown file."""
|
| 253 |
-
content = file_path.read_bytes()
|
| 254 |
encoding = chardet.detect(content)["encoding"] or "utf-8"
|
| 255 |
text = content.decode(encoding, errors="ignore")
|
| 256 |
html = markdown(text)
|
|
@@ -258,18 +249,16 @@ class ContentProcessor:
|
|
| 258 |
return soup.get_text()
|
| 259 |
|
| 260 |
@staticmethod
|
| 261 |
-
def _extract_srt_text(
|
| 262 |
"""Extract text from SRT subtitle file."""
|
| 263 |
-
content = file_path.read_bytes()
|
| 264 |
encoding = chardet.detect(content)["encoding"] or "utf-8"
|
| 265 |
text = content.decode(encoding, errors="ignore")
|
| 266 |
# Remove timestamp lines
|
| 267 |
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", text)
|
| 268 |
|
| 269 |
@staticmethod
|
| 270 |
-
def _extract_plain_text(
|
| 271 |
"""Extract text from plain text file."""
|
| 272 |
-
content = file_path.read_bytes()
|
| 273 |
encoding = chardet.detect(content)["encoding"] or "utf-8"
|
| 274 |
return content.decode(encoding, errors="ignore")
|
| 275 |
|
|
@@ -317,15 +306,11 @@ class TranslationService:
|
|
| 317 |
target_lang: Language
|
| 318 |
) -> str:
|
| 319 |
"""Perform direct translation using available model."""
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
return self._process_text_with_pipeline(text, pipeline_obj, lang_tag)
|
| 326 |
-
except Exception as e:
|
| 327 |
-
logger.error(f"Direct translation error: {e}")
|
| 328 |
-
return f"Translation error: {str(e)}"
|
| 329 |
|
| 330 |
def _chained_translate(
|
| 331 |
self,
|
|
@@ -344,21 +329,17 @@ class TranslationService:
|
|
| 344 |
Returns:
|
| 345 |
Translated text through chaining
|
| 346 |
"""
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
return final_text
|
| 359 |
-
except Exception as e:
|
| 360 |
-
logger.error(f"Chained translation error: {e}")
|
| 361 |
-
return f"Chained translation error: {str(e)}"
|
| 362 |
|
| 363 |
def _process_text_with_pipeline(
|
| 364 |
self,
|
|
@@ -383,38 +364,30 @@ class TranslationService:
|
|
| 383 |
if s.strip()
|
| 384 |
]
|
| 385 |
|
| 386 |
-
if not sentences:
|
| 387 |
-
translated_paragraphs.append("")
|
| 388 |
-
continue
|
| 389 |
-
|
| 390 |
# Add language tag to each sentence
|
| 391 |
formatted_sentences = [
|
| 392 |
f"{lang_tag} {sentence}"
|
| 393 |
for sentence in sentences
|
| 394 |
]
|
| 395 |
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
translated_paragraphs.append(". ".join(translated_sentences))
|
| 415 |
-
except Exception as e:
|
| 416 |
-
logger.error(f"Pipeline processing error: {e}")
|
| 417 |
-
translated_paragraphs.append(f"[Translation Error: {str(e)}]")
|
| 418 |
|
| 419 |
return "\n".join(translated_paragraphs)
|
| 420 |
|
|
@@ -438,13 +411,9 @@ class AudioProcessor:
|
|
| 438 |
Returns:
|
| 439 |
Transcribed text
|
| 440 |
"""
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
return result["text"]
|
| 445 |
-
except Exception as e:
|
| 446 |
-
logger.error(f"Transcription error: {e}")
|
| 447 |
-
return f"Transcription error: {str(e)}"
|
| 448 |
|
| 449 |
# ================================
|
| 450 |
# Main Application
|
|
@@ -465,7 +434,7 @@ class TranslationApp:
|
|
| 465 |
source_lang: Language,
|
| 466 |
text_input: str,
|
| 467 |
audio_file: Optional[str],
|
| 468 |
-
file_obj: Optional[
|
| 469 |
) -> str:
|
| 470 |
"""
|
| 471 |
Process input based on selected mode.
|
|
@@ -480,29 +449,22 @@ class TranslationApp:
|
|
| 480 |
Returns:
|
| 481 |
Processed text content
|
| 482 |
"""
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
file_path = file_obj.name if hasattr(file_obj, 'name') else file_obj
|
| 500 |
-
return self.content_processor.extract_text_from_file(file_path)
|
| 501 |
-
|
| 502 |
-
return ""
|
| 503 |
-
except Exception as e:
|
| 504 |
-
logger.error(f"Input processing error: {e}")
|
| 505 |
-
return f"Input processing error: {str(e)}"
|
| 506 |
|
| 507 |
def create_interface(self) -> gr.Blocks:
|
| 508 |
"""Create and return the Gradio interface."""
|
|
@@ -511,22 +473,6 @@ class TranslationApp:
|
|
| 511 |
title="LocaleNLP Translation Service",
|
| 512 |
theme=gr.themes.Monochrome()
|
| 513 |
) as interface:
|
| 514 |
-
# Custom CSS for black button
|
| 515 |
-
gr.HTML("""
|
| 516 |
-
<style>
|
| 517 |
-
.gr-button-secondary {
|
| 518 |
-
background-color: #000000 !important;
|
| 519 |
-
border-color: #000000 !important;
|
| 520 |
-
color: white !important;
|
| 521 |
-
}
|
| 522 |
-
.gr-button-secondary:hover {
|
| 523 |
-
background-color: #333333 !important;
|
| 524 |
-
border-color: #333333 !important;
|
| 525 |
-
color: white !important;
|
| 526 |
-
}
|
| 527 |
-
</style>
|
| 528 |
-
""")
|
| 529 |
-
|
| 530 |
# Header
|
| 531 |
gr.Markdown("""
|
| 532 |
# 🌍 LocaleNLP Translation Service
|
|
@@ -592,26 +538,22 @@ class TranslationApp:
|
|
| 592 |
)
|
| 593 |
|
| 594 |
# Event handlers
|
| 595 |
-
def update_visibility(mode: str) ->
|
| 596 |
"""Update component visibility based on input mode."""
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
gr.update(
|
| 603 |
-
|
| 604 |
-
gr.update(visible=visibility_file),
|
| 605 |
-
gr.update(value="", visible=True),
|
| 606 |
-
gr.update(value="")
|
| 607 |
-
]
|
| 608 |
|
| 609 |
def handle_process(
|
| 610 |
mode: str,
|
| 611 |
source_lang: str,
|
| 612 |
text_input: str,
|
| 613 |
audio_file: Optional[str],
|
| 614 |
-
file_obj: Optional[
|
| 615 |
) -> Tuple[str, str]:
|
| 616 |
"""Handle initial input processing."""
|
| 617 |
try:
|
|
|
|
| 1 |
"""
|
| 2 |
LocaleNLP Translation Service
|
| 3 |
============================
|
| 4 |
+
|
| 5 |
A multi-language translation application supporting English, Wolof, Hausa, and Darija.
|
| 6 |
Features text, audio, and document translation with automatic chaining for all language pairs.
|
| 7 |
+
|
| 8 |
Author: LocaleNLP
|
| 9 |
"""
|
| 10 |
|
|
|
|
| 12 |
import re
|
| 13 |
import logging
|
| 14 |
import tempfile
|
| 15 |
+
from typing import Optional, Dict, Tuple, Any, Union
|
| 16 |
from pathlib import Path
|
| 17 |
from dataclasses import dataclass
|
| 18 |
from enum import Enum
|
|
|
|
| 133 |
|
| 134 |
# Authenticate with Hugging Face if token provided
|
| 135 |
if hf_token := os.getenv("hffff"):
|
| 136 |
+
login(token=hf_token)
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 139 |
+
config.model_name,
|
| 140 |
+
token=hf_token
|
| 141 |
+
).to(self._get_device())
|
| 142 |
+
|
| 143 |
+
tokenizer = MarianTokenizer.from_pretrained(
|
| 144 |
+
config.model_name,
|
| 145 |
+
token=hf_token
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
self._translation_pipeline = pipeline(
|
| 149 |
+
"translation",
|
| 150 |
+
model=model,
|
| 151 |
+
tokenizer=tokenizer,
|
| 152 |
+
device=0 if self._get_device().type == "cuda" else -1
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
self._current_model_name = config.model_name
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
return self._translation_pipeline, config.language_tag
|
| 158 |
|
|
|
|
| 165 |
"""
|
| 166 |
if self._whisper_model is None:
|
| 167 |
logger.info("Loading Whisper base model...")
|
| 168 |
+
self._whisper_model = whisper.load_model("base")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
return self._whisper_model
|
| 170 |
|
| 171 |
def _get_device(self) -> torch.device:
|
|
|
|
| 198 |
extension = file_path.suffix.lower()
|
| 199 |
|
| 200 |
try:
|
| 201 |
+
content = file_path.read_bytes()
|
| 202 |
+
|
| 203 |
if extension == ".pdf":
|
| 204 |
+
return ContentProcessor._extract_pdf_text(content)
|
| 205 |
elif extension == ".docx":
|
| 206 |
return ContentProcessor._extract_docx_text(file_path)
|
| 207 |
elif extension in (".html", ".htm"):
|
| 208 |
+
return ContentProcessor._extract_html_text(content)
|
| 209 |
elif extension == ".md":
|
| 210 |
+
return ContentProcessor._extract_markdown_text(content)
|
| 211 |
elif extension == ".srt":
|
| 212 |
+
return ContentProcessor._extract_srt_text(content)
|
| 213 |
elif extension in (".txt", ".text"):
|
| 214 |
+
return ContentProcessor._extract_plain_text(content)
|
| 215 |
else:
|
| 216 |
raise ValueError(f"Unsupported file type: {extension}")
|
| 217 |
|
|
|
|
| 220 |
raise
|
| 221 |
|
| 222 |
@staticmethod
|
| 223 |
+
def _extract_pdf_text(content: bytes) -> str:
|
| 224 |
"""Extract text from PDF file."""
|
| 225 |
+
with fitz.open(stream=content, filetype="pdf") as doc:
|
| 226 |
return "\n".join(page.get_text() for page in doc)
|
| 227 |
|
| 228 |
@staticmethod
|
| 229 |
def _extract_docx_text(file_path: Path) -> str:
|
| 230 |
"""Extract text from DOCX file."""
|
| 231 |
+
doc = docx.Document(str(file_path))
|
| 232 |
return "\n".join(paragraph.text for paragraph in doc.paragraphs)
|
| 233 |
|
| 234 |
@staticmethod
|
| 235 |
+
def _extract_html_text(content: bytes) -> str:
|
| 236 |
"""Extract text from HTML file."""
|
|
|
|
| 237 |
encoding = chardet.detect(content)["encoding"] or "utf-8"
|
| 238 |
text = content.decode(encoding, errors="ignore")
|
| 239 |
soup = BeautifulSoup(text, "html.parser")
|
| 240 |
return soup.get_text()
|
| 241 |
|
| 242 |
@staticmethod
|
| 243 |
+
def _extract_markdown_text(content: bytes) -> str:
|
| 244 |
"""Extract text from Markdown file."""
|
|
|
|
| 245 |
encoding = chardet.detect(content)["encoding"] or "utf-8"
|
| 246 |
text = content.decode(encoding, errors="ignore")
|
| 247 |
html = markdown(text)
|
|
|
|
| 249 |
return soup.get_text()
|
| 250 |
|
| 251 |
@staticmethod
|
| 252 |
+
def _extract_srt_text(content: bytes) -> str:
|
| 253 |
"""Extract text from SRT subtitle file."""
|
|
|
|
| 254 |
encoding = chardet.detect(content)["encoding"] or "utf-8"
|
| 255 |
text = content.decode(encoding, errors="ignore")
|
| 256 |
# Remove timestamp lines
|
| 257 |
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", text)
|
| 258 |
|
| 259 |
@staticmethod
|
| 260 |
+
def _extract_plain_text(content: bytes) -> str:
|
| 261 |
"""Extract text from plain text file."""
|
|
|
|
| 262 |
encoding = chardet.detect(content)["encoding"] or "utf-8"
|
| 263 |
return content.decode(encoding, errors="ignore")
|
| 264 |
|
|
|
|
| 306 |
target_lang: Language
|
| 307 |
) -> str:
|
| 308 |
"""Perform direct translation using available model."""
|
| 309 |
+
pipeline_obj, lang_tag = self.model_manager.get_translation_pipeline(
|
| 310 |
+
source_lang, target_lang
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
return self._process_text_with_pipeline(text, pipeline_obj, lang_tag)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
def _chained_translate(
|
| 316 |
self,
|
|
|
|
| 329 |
Returns:
|
| 330 |
Translated text through chaining
|
| 331 |
"""
|
| 332 |
+
# First: source_lang -> English
|
| 333 |
+
intermediate_text = self._direct_translate(
|
| 334 |
+
text, source_lang, Language.ENGLISH
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
# Second: English -> target_lang
|
| 338 |
+
final_text = self._direct_translate(
|
| 339 |
+
intermediate_text, Language.ENGLISH, target_lang
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
return final_text
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
|
| 344 |
def _process_text_with_pipeline(
|
| 345 |
self,
|
|
|
|
| 364 |
if s.strip()
|
| 365 |
]
|
| 366 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
# Add language tag to each sentence
|
| 368 |
formatted_sentences = [
|
| 369 |
f"{lang_tag} {sentence}"
|
| 370 |
for sentence in sentences
|
| 371 |
]
|
| 372 |
|
| 373 |
+
# Perform translation
|
| 374 |
+
results = pipeline_obj(
|
| 375 |
+
formatted_sentences,
|
| 376 |
+
max_length=5000,
|
| 377 |
+
num_beams=5,
|
| 378 |
+
early_stopping=True,
|
| 379 |
+
no_repeat_ngram_size=3,
|
| 380 |
+
repetition_penalty=1.5,
|
| 381 |
+
length_penalty=1.2
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
# Process results
|
| 385 |
+
translated_sentences = [
|
| 386 |
+
result["translation_text"].capitalize()
|
| 387 |
+
for result in results
|
| 388 |
+
]
|
| 389 |
+
|
| 390 |
+
translated_paragraphs.append(". ".join(translated_sentences))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
return "\n".join(translated_paragraphs)
|
| 393 |
|
|
|
|
| 411 |
Returns:
|
| 412 |
Transcribed text
|
| 413 |
"""
|
| 414 |
+
model = self.model_manager.get_whisper_model()
|
| 415 |
+
result = model.transcribe(audio_file_path)
|
| 416 |
+
return result["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
|
| 418 |
# ================================
|
| 419 |
# Main Application
|
|
|
|
| 434 |
source_lang: Language,
|
| 435 |
text_input: str,
|
| 436 |
audio_file: Optional[str],
|
| 437 |
+
file_obj: Optional[gr.FileData]
|
| 438 |
) -> str:
|
| 439 |
"""
|
| 440 |
Process input based on selected mode.
|
|
|
|
| 449 |
Returns:
|
| 450 |
Processed text content
|
| 451 |
"""
|
| 452 |
+
if mode == InputMode.TEXT:
|
| 453 |
+
return text_input
|
| 454 |
+
|
| 455 |
+
elif mode == InputMode.AUDIO:
|
| 456 |
+
if source_lang != Language.ENGLISH:
|
| 457 |
+
raise ValueError("Audio input must be in English.")
|
| 458 |
+
if not audio_file:
|
| 459 |
+
raise ValueError("No audio file provided.")
|
| 460 |
+
return self.audio_processor.transcribe(audio_file)
|
| 461 |
+
|
| 462 |
+
elif mode == InputMode.FILE:
|
| 463 |
+
if not file_obj:
|
| 464 |
+
raise ValueError("No file uploaded.")
|
| 465 |
+
return self.content_processor.extract_text_from_file(file_obj.name)
|
| 466 |
+
|
| 467 |
+
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
|
| 469 |
def create_interface(self) -> gr.Blocks:
|
| 470 |
"""Create and return the Gradio interface."""
|
|
|
|
| 473 |
title="LocaleNLP Translation Service",
|
| 474 |
theme=gr.themes.Monochrome()
|
| 475 |
) as interface:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 476 |
# Header
|
| 477 |
gr.Markdown("""
|
| 478 |
# 🌍 LocaleNLP Translation Service
|
|
|
|
| 538 |
)
|
| 539 |
|
| 540 |
# Event handlers
|
| 541 |
+
def update_visibility(mode: str) -> Dict[str, Any]:
|
| 542 |
"""Update component visibility based on input mode."""
|
| 543 |
+
return {
|
| 544 |
+
input_text: gr.update(visible=(mode == InputMode.TEXT.value)),
|
| 545 |
+
audio_input: gr.update(visible=(mode == InputMode.AUDIO.value)),
|
| 546 |
+
file_input: gr.update(visible=(mode == InputMode.FILE.value)),
|
| 547 |
+
extracted_text: gr.update(value="", visible=True),
|
| 548 |
+
output_text: gr.update(value="")
|
| 549 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
|
| 551 |
def handle_process(
|
| 552 |
mode: str,
|
| 553 |
source_lang: str,
|
| 554 |
text_input: str,
|
| 555 |
audio_file: Optional[str],
|
| 556 |
+
file_obj: Optional[gr.FileData]
|
| 557 |
) -> Tuple[str, str]:
|
| 558 |
"""Handle initial input processing."""
|
| 559 |
try:
|