File size: 4,320 Bytes
ebaff66
c811a04
 
 
 
 
cef1afc
e46ff5e
bebbcd0
 
e46ff5e
ebaff66
e46ff5e
 
 
 
 
 
 
 
 
ebaff66
e46ff5e
 
 
 
 
 
 
 
bebbcd0
e46ff5e
 
 
 
bebbcd0
e46ff5e
 
 
 
 
bebbcd0
e46ff5e
 
 
 
 
ebaff66
e46ff5e
 
 
 
ebaff66
e46ff5e
 
ebaff66
e46ff5e
 
cef1afc
e46ff5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import torch
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
from pathlib import Path
from transformers import T5EncoderModel, T5Tokenizer
import safetensors.torch
import json
import argparse

def load_vae(vae_dir):
    vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors"
    vae_config_path = vae_dir / "config.json"
    with open(vae_config_path, 'r') as f:
        vae_config = json.load(f)
    vae = CausalVideoAutoencoder.from_config(vae_config)
    vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
    vae.load_state_dict(vae_state_dict)
    return vae.cuda().to(torch.bfloat16)

def load_unet(unet_dir):
    unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors"
    unet_config_path = unet_dir / "config.json"
    transformer_config = Transformer3DModel.load_config(unet_config_path)
    transformer = Transformer3DModel.from_config(transformer_config)
    unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
    transformer.load_state_dict(unet_state_dict, strict=True)
    return transformer.cuda()

def load_scheduler(scheduler_dir):
    scheduler_config_path = scheduler_dir / "scheduler_config.json"
    scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
    return RectifiedFlowScheduler.from_config(scheduler_config)

def main():
    # Parse command line arguments
    parser = argparse.ArgumentParser(description='Load models from separate directories')
    parser.add_argument('--separate_dir', type=str, required=True, help='Path to the directory containing unet, vae, and scheduler subdirectories')
    args = parser.parse_args()

    # Paths for the separate mode directories
    separate_dir = Path(args.separate_dir)
    unet_dir = separate_dir / 'unet'
    vae_dir = separate_dir / 'vae'
    scheduler_dir = separate_dir / 'scheduler'

    # Load models
    vae = load_vae(vae_dir)
    unet = load_unet(unet_dir)
    scheduler = load_scheduler(scheduler_dir)

    # Patchifier (remains the same)
    patchifier = SymmetricPatchifier(patch_size=1)

    text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to("cuda")
    tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")

    # Use submodels for the pipeline
    submodel_dict = {
        "transformer": unet,  # using unet for transformer
        "patchifier": patchifier,
        "scheduler": scheduler,
        "text_encoder": text_encoder,
        "tokenizer": tokenizer,
        "vae": vae,
    }

    pipeline = VideoPixArtAlphaPipeline(**submodel_dict).to("cuda")

    # Sample input
    num_inference_steps = 20
    num_images_per_prompt = 2
    guidance_scale = 3
    height = 512
    width = 768
    num_frames = 57
    frame_rate = 25
    sample = {
        "prompt": "A middle-aged man with glasses and a salt-and-pepper beard is driving a car and talking, gesturing with his right hand. "
                  "The man is wearing a dark blue zip-up jacket and a light blue collared shirt. He is sitting in the driver's seat of a car with a black interior. The car is moving on a road with trees and bushes on either side. The man has a serious expression on his face and is looking straight ahead.",
        'prompt_attention_mask': None,  # Adjust attention masks as needed
        'negative_prompt': "Ugly deformed",
        'negative_prompt_attention_mask': None
    }

    # Generate images (video frames)
    images = pipeline(
        num_inference_steps=num_inference_steps,
        num_images_per_prompt=num_images_per_prompt,
        guidance_scale=guidance_scale,
        generator=None,
        output_type="pt",
        callback_on_step_end=None,
        height=height,
        width=width,
        num_frames=num_frames,
        frame_rate=frame_rate,
        **sample,
        is_video=True,
        vae_per_channel_normalize=True,
    ).images

    print("Generated images (video frames).")

if __name__ == "__main__":
    main()