Spaces:
Running
on
A100
Running
on
A100
Examples: update and fix scripts.
Browse files- scripts/to_safetensors.py +1 -2
- xora/examples/image_to_video.py +101 -88
- xora/examples/text_to_video.py +90 -79
scripts/to_safetensors.py
CHANGED
@@ -60,7 +60,7 @@ def load_vae_config(vae_path: Path) -> str:
|
|
60 |
return str(config_path)
|
61 |
|
62 |
|
63 |
-
def main(unet_path: str, vae_path: str,
|
64 |
unet_config_path: str = None, scheduler_config_path: str = None) -> None:
|
65 |
unet = convert_unet(torch.load(unet_path, weights_only=True), add_prefix=(mode == 'single'))
|
66 |
|
@@ -98,7 +98,6 @@ if __name__ == '__main__':
|
|
98 |
parser = argparse.ArgumentParser()
|
99 |
parser.add_argument('--unet_path', '-u', type=str, default='unet/ema-002.pt')
|
100 |
parser.add_argument('--vae_path', '-v', type=str, default='vae/')
|
101 |
-
parser.add_argument('--t5_path', '-t', type=str, default='t5/PixArt-XL-2-1024-MS/')
|
102 |
parser.add_argument('--out_path', '-o', type=str, default='xora.safetensors')
|
103 |
parser.add_argument('--mode', '-m', type=str, choices=['single', 'separate'], default='single',
|
104 |
help="Choose 'single' for the original behavior, 'separate' to save unet and vae separately.")
|
|
|
60 |
return str(config_path)
|
61 |
|
62 |
|
63 |
+
def main(unet_path: str, vae_path: str, out_path: str, mode: str,
|
64 |
unet_config_path: str = None, scheduler_config_path: str = None) -> None:
|
65 |
unet = convert_unet(torch.load(unet_path, weights_only=True), add_prefix=(mode == 'single'))
|
66 |
|
|
|
98 |
parser = argparse.ArgumentParser()
|
99 |
parser.add_argument('--unet_path', '-u', type=str, default='unet/ema-002.pt')
|
100 |
parser.add_argument('--vae_path', '-v', type=str, default='vae/')
|
|
|
101 |
parser.add_argument('--out_path', '-o', type=str, default='xora.safetensors')
|
102 |
parser.add_argument('--mode', '-m', type=str, choices=['single', 'separate'], default='single',
|
103 |
help="Choose 'single' for the original behavior, 'separate' to save unet and vae separately.")
|
xora/examples/image_to_video.py
CHANGED
@@ -5,94 +5,107 @@ from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
from pathlib import Path
|
|
|
8 |
import safetensors.torch
|
9 |
import json
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
)
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
from pathlib import Path
|
8 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
9 |
import safetensors.torch
|
10 |
import json
|
11 |
+
import argparse
|
12 |
|
13 |
+
def load_vae(vae_dir):
|
14 |
+
vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors"
|
15 |
+
vae_config_path = vae_dir / "config.json"
|
16 |
+
with open(vae_config_path, 'r') as f:
|
17 |
+
vae_config = json.load(f)
|
18 |
+
vae = CausalVideoAutoencoder.from_config(vae_config)
|
19 |
+
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
|
20 |
+
vae.load_state_dict(vae_state_dict)
|
21 |
+
return vae.cuda().to(torch.bfloat16)
|
22 |
+
|
23 |
+
def load_unet(unet_dir):
|
24 |
+
unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors"
|
25 |
+
unet_config_path = unet_dir / "config.json"
|
26 |
+
transformer_config = Transformer3DModel.load_config(unet_config_path)
|
27 |
+
transformer = Transformer3DModel.from_config(transformer_config)
|
28 |
+
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
|
29 |
+
transformer.load_state_dict(unet_state_dict, strict=True)
|
30 |
+
return transformer.cuda()
|
31 |
+
|
32 |
+
def load_scheduler(scheduler_dir):
|
33 |
+
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
34 |
+
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
35 |
+
return RectifiedFlowScheduler.from_config(scheduler_config)
|
36 |
+
|
37 |
+
def main():
|
38 |
+
# Parse command line arguments
|
39 |
+
parser = argparse.ArgumentParser(description='Load models from separate directories')
|
40 |
+
parser.add_argument('--separate_dir', type=str, required=True, help='Path to the directory containing unet, vae, and scheduler subdirectories')
|
41 |
+
args = parser.parse_args()
|
42 |
+
|
43 |
+
# Paths for the separate mode directories
|
44 |
+
separate_dir = Path(args.separate_dir)
|
45 |
+
unet_dir = separate_dir / 'unet'
|
46 |
+
vae_dir = separate_dir / 'vae'
|
47 |
+
scheduler_dir = separate_dir / 'scheduler'
|
48 |
+
|
49 |
+
# Load models
|
50 |
+
vae = load_vae(vae_dir)
|
51 |
+
unet = load_unet(unet_dir)
|
52 |
+
scheduler = load_scheduler(scheduler_dir)
|
53 |
+
|
54 |
+
# Patchifier (remains the same)
|
55 |
+
patchifier = SymmetricPatchifier(patch_size=1)
|
56 |
+
|
57 |
+
# text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to("cuda")
|
58 |
+
# tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
|
59 |
+
|
60 |
+
# Use submodels for the pipeline
|
61 |
+
submodel_dict = {
|
62 |
+
"transformer": unet, # using unet for transformer
|
63 |
+
"patchifier": patchifier,
|
64 |
+
"text_encoder": None,
|
65 |
+
"tokenizer": None,
|
66 |
+
"scheduler": scheduler,
|
67 |
+
"vae": vae,
|
68 |
+
}
|
69 |
+
|
70 |
+
model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
|
71 |
+
pipeline = VideoPixArtAlphaPipeline(
|
72 |
+
**submodel_dict
|
73 |
+
).to("cuda")
|
74 |
+
|
75 |
+
num_inference_steps = 20
|
76 |
+
num_images_per_prompt = 1
|
77 |
+
guidance_scale = 3
|
78 |
+
height = 512
|
79 |
+
width = 768
|
80 |
+
num_frames = 57
|
81 |
+
frame_rate = 25
|
82 |
+
|
83 |
+
# Sample input stays the same
|
84 |
+
sample = torch.load("/opt/sample_media.pt")
|
85 |
+
for key, item in sample.items():
|
86 |
+
if item is not None:
|
87 |
+
sample[key] = item.cuda()
|
88 |
+
|
89 |
+
# media_items = torch.load("/opt/sample_media.pt")
|
90 |
+
|
91 |
+
# Generate images (video frames)
|
92 |
+
images = pipeline(
|
93 |
+
num_inference_steps=num_inference_steps,
|
94 |
+
num_images_per_prompt=num_images_per_prompt,
|
95 |
+
guidance_scale=guidance_scale,
|
96 |
+
generator=None,
|
97 |
+
output_type="pt",
|
98 |
+
callback_on_step_end=None,
|
99 |
+
height=height,
|
100 |
+
width=width,
|
101 |
+
num_frames=num_frames,
|
102 |
+
frame_rate=frame_rate,
|
103 |
+
**sample,
|
104 |
+
is_video=True,
|
105 |
+
vae_per_channel_normalize=True,
|
106 |
+
).images
|
107 |
+
|
108 |
+
print("Generated video frames.")
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
main()
|
xora/examples/text_to_video.py
CHANGED
@@ -5,93 +5,104 @@ from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
|
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
from pathlib import Path
|
8 |
-
from transformers import T5EncoderModel
|
9 |
import safetensors.torch
|
10 |
import json
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
state_dict=vae_state_dict,
|
27 |
-
)
|
28 |
-
vae = vae.cuda().to(torch.bfloat16)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
transformer = Transformer3DModel.from_config(transformer_config)
|
35 |
-
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
|
36 |
-
transformer.load_state_dict(unet_state_dict, strict=True)
|
37 |
-
transformer = transformer.cuda()
|
38 |
-
unet = transformer
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
44 |
|
45 |
-
#
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
"patchifier": patchifier,
|
53 |
-
"scheduler": scheduler,
|
54 |
-
"vae": vae,
|
55 |
-
}
|
56 |
-
model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
|
57 |
-
pipeline = VideoPixArtAlphaPipeline.from_pretrained(model_name_or_path,
|
58 |
-
safety_checker=None,
|
59 |
-
revision=None,
|
60 |
-
torch_dtype=torch.float32,
|
61 |
-
**submodel_dict,
|
62 |
-
).to("cuda")
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
num_images_per_prompt = 2
|
67 |
-
guidance_scale = 3
|
68 |
-
height = 512
|
69 |
-
width = 768
|
70 |
-
num_frames = 57
|
71 |
-
frame_rate = 25
|
72 |
-
sample = {
|
73 |
-
"prompt": "A middle-aged man with glasses and a salt-and-pepper beard is driving a car and talking, gesturing with his right hand. "
|
74 |
-
"The man is wearing a dark blue zip-up jacket and a light blue collared shirt. He is sitting in the driver's seat of a car with a black interior. The car is moving on a road with trees and bushes on either side. The man has a serious expression on his face and is looking straight ahead.",
|
75 |
-
'prompt_attention_mask': None, # Adjust attention masks as needed
|
76 |
-
'negative_prompt': "Ugly deformed",
|
77 |
-
'negative_prompt_attention_mask': None
|
78 |
-
}
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
num_inference_steps=num_inference_steps,
|
83 |
-
num_images_per_prompt=num_images_per_prompt,
|
84 |
-
guidance_scale=guidance_scale,
|
85 |
-
generator=None,
|
86 |
-
output_type="pt",
|
87 |
-
callback_on_step_end=None,
|
88 |
-
height=height,
|
89 |
-
width=width,
|
90 |
-
num_frames=num_frames,
|
91 |
-
frame_rate=frame_rate,
|
92 |
-
**sample,
|
93 |
-
is_video=True,
|
94 |
-
vae_per_channel_normalize=True,
|
95 |
-
).images
|
96 |
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from xora.schedulers.rf import RectifiedFlowScheduler
|
6 |
from xora.pipelines.pipeline_video_pixart_alpha import VideoPixArtAlphaPipeline
|
7 |
from pathlib import Path
|
8 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
9 |
import safetensors.torch
|
10 |
import json
|
11 |
+
import argparse
|
12 |
|
13 |
+
def load_vae(vae_dir):
|
14 |
+
vae_ckpt_path = vae_dir / "diffusion_pytorch_model.safetensors"
|
15 |
+
vae_config_path = vae_dir / "config.json"
|
16 |
+
with open(vae_config_path, 'r') as f:
|
17 |
+
vae_config = json.load(f)
|
18 |
+
vae = CausalVideoAutoencoder.from_config(vae_config)
|
19 |
+
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
|
20 |
+
vae.load_state_dict(vae_state_dict)
|
21 |
+
return vae.cuda().to(torch.bfloat16)
|
22 |
|
23 |
+
def load_unet(unet_dir):
|
24 |
+
unet_ckpt_path = unet_dir / "diffusion_pytorch_model.safetensors"
|
25 |
+
unet_config_path = unet_dir / "config.json"
|
26 |
+
transformer_config = Transformer3DModel.load_config(unet_config_path)
|
27 |
+
transformer = Transformer3DModel.from_config(transformer_config)
|
28 |
+
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
|
29 |
+
transformer.load_state_dict(unet_state_dict, strict=True)
|
30 |
+
return transformer.cuda()
|
|
|
|
|
|
|
31 |
|
32 |
+
def load_scheduler(scheduler_dir):
|
33 |
+
scheduler_config_path = scheduler_dir / "scheduler_config.json"
|
34 |
+
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
|
35 |
+
return RectifiedFlowScheduler.from_config(scheduler_config)
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
def main():
|
38 |
+
# Parse command line arguments
|
39 |
+
parser = argparse.ArgumentParser(description='Load models from separate directories')
|
40 |
+
parser.add_argument('--separate_dir', type=str, required=True, help='Path to the directory containing unet, vae, and scheduler subdirectories')
|
41 |
+
args = parser.parse_args()
|
42 |
|
43 |
+
# Paths for the separate mode directories
|
44 |
+
separate_dir = Path(args.separate_dir)
|
45 |
+
unet_dir = separate_dir / 'unet'
|
46 |
+
vae_dir = separate_dir / 'vae'
|
47 |
+
scheduler_dir = separate_dir / 'scheduler'
|
48 |
|
49 |
+
# Load models
|
50 |
+
vae = load_vae(vae_dir)
|
51 |
+
unet = load_unet(unet_dir)
|
52 |
+
scheduler = load_scheduler(scheduler_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
# Patchifier (remains the same)
|
55 |
+
patchifier = SymmetricPatchifier(patch_size=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to("cuda")
|
58 |
+
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
# Use submodels for the pipeline
|
61 |
+
submodel_dict = {
|
62 |
+
"transformer": unet, # using unet for transformer
|
63 |
+
"patchifier": patchifier,
|
64 |
+
"scheduler": scheduler,
|
65 |
+
"text_encoder": text_encoder,
|
66 |
+
"tokenizer": tokenizer,
|
67 |
+
"vae": vae,
|
68 |
+
}
|
69 |
+
|
70 |
+
pipeline = VideoPixArtAlphaPipeline(**submodel_dict).to("cuda")
|
71 |
+
|
72 |
+
# Sample input
|
73 |
+
num_inference_steps = 20
|
74 |
+
num_images_per_prompt = 2
|
75 |
+
guidance_scale = 3
|
76 |
+
height = 512
|
77 |
+
width = 768
|
78 |
+
num_frames = 57
|
79 |
+
frame_rate = 25
|
80 |
+
sample = {
|
81 |
+
"prompt": "A middle-aged man with glasses and a salt-and-pepper beard is driving a car and talking, gesturing with his right hand. "
|
82 |
+
"The man is wearing a dark blue zip-up jacket and a light blue collared shirt. He is sitting in the driver's seat of a car with a black interior. The car is moving on a road with trees and bushes on either side. The man has a serious expression on his face and is looking straight ahead.",
|
83 |
+
'prompt_attention_mask': None, # Adjust attention masks as needed
|
84 |
+
'negative_prompt': "Ugly deformed",
|
85 |
+
'negative_prompt_attention_mask': None
|
86 |
+
}
|
87 |
+
|
88 |
+
# Generate images (video frames)
|
89 |
+
images = pipeline(
|
90 |
+
num_inference_steps=num_inference_steps,
|
91 |
+
num_images_per_prompt=num_images_per_prompt,
|
92 |
+
guidance_scale=guidance_scale,
|
93 |
+
generator=None,
|
94 |
+
output_type="pt",
|
95 |
+
callback_on_step_end=None,
|
96 |
+
height=height,
|
97 |
+
width=width,
|
98 |
+
num_frames=num_frames,
|
99 |
+
frame_rate=frame_rate,
|
100 |
+
**sample,
|
101 |
+
is_video=True,
|
102 |
+
vae_per_channel_normalize=True,
|
103 |
+
).images
|
104 |
+
|
105 |
+
print("Generated images (video frames).")
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
main()
|