Spaces:
Running
Running
File size: 16,895 Bytes
f121890 5d45184 f121890 e6e9684 f121890 1366f26 5d45184 e6e9684 32ed837 68c303a 59575d2 20d40ec ddb4a97 20d40ec ce5365e 20d40ec ce5365e 20d40ec ce5365e 20d40ec ce5365e 20d40ec e6e9684 20d40ec 32ed837 f121890 2dd66b7 b99c699 2dd66b7 1fcdab3 5d45184 1fcdab3 5d45184 1fcdab3 f121890 e6e9684 32ed837 ddb4a97 32ed837 ddb4a97 32ed837 ddb4a97 32ed837 ddb4a97 32ed837 ddb4a97 32ed837 ddb4a97 32ed837 ddb4a97 32ed837 ddb4a97 e6e9684 ddb4a97 b99c699 32ed837 b99c699 32ed837 b99c699 e6e9684 32ed837 e6e9684 32ed837 2dd66b7 32ed837 2dd66b7 e6e9684 32ed837 e6e9684 ddb4a97 1366f26 f121890 b99c699 2dd66b7 ddb4a97 2dd66b7 f121890 2dd66b7 a91474f 2dd66b7 a91474f 2dd66b7 f121890 e6e9684 ddb4a97 2dd66b7 32ed837 f121890 32ed837 2dd66b7 20d40ec e6e9684 ce5365e f121890 59575d2 f121890 20d40ec f121890 2dd66b7 ce5365e 59575d2 ce5365e 59575d2 f121890 e6e9684 32ed837 e6e9684 32ed837 e6e9684 32ed837 e6e9684 f121890 32ed837 f121890 e6e9684 3dde8a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
import os
import re
import crystal_toolkit.components as ctc
import dash
import dash_mp_components as dmp
import numpy as np
import periodictable
from crystal_toolkit.settings import SETTINGS
from dash import dcc, html
from dash.dependencies import Input, Output, State
from dash_breakpoints import WindowBreakpoints
from datasets import load_dataset
from pymatgen.analysis.structure_analyzer import SpacegroupAnalyzer
from pymatgen.core import Structure
HF_TOKEN = os.environ.get("HF_TOKEN")
top_k = 500
# Load only the train split of the dataset
dataset = load_dataset(
"LeMaterial/leMat-Bulk",
token=HF_TOKEN,
split="train",
columns=[
"lattice_vectors",
"species_at_sites",
"cartesian_site_positions",
"energy",
# "energy_corrected", # not yet available in LeMat-Bulk
"immutable_id",
"elements",
"functional",
"stress_tensor",
"magnetic_moments",
"forces",
# "band_gap_direct", #future release
# "band_gap_indirect", #future release
"dos_ef",
# "charges", #future release
"functional",
"chemical_formula_reduced",
"chemical_formula_descriptive",
"total_magnetization",
],
).select(range(1000))
display_columns = [
"chemical_formula_descriptive",
"functional",
"immutable_id",
"energy",
]
display_names = {
"chemical_formula_descriptive": "Formula",
"functional": "Functional",
"immutable_id": "Material ID",
"energy": "Energy (eV)",
}
mapping_table_idx_dataset_idx = {}
map_periodic_table = {v.symbol: k for k, v in enumerate(periodictable.elements)}
n_elements = len(map_periodic_table)
# Preprocessing step to create an index for the dataset
train_df = dataset.select_columns(["chemical_formula_descriptive"]).to_pandas()
pattern = re.compile(r"(?P<element>[A-Z][a-z]?)(?P<count>\d*)")
extracted = train_df["chemical_formula_descriptive"].str.extractall(pattern)
extracted["count"] = extracted["count"].replace("", "1").astype(int)
wide_df = extracted.reset_index().pivot_table( # Move index to columns for pivoting
index="level_0", # original row index
columns="element",
values="count",
aggfunc="sum",
fill_value=0,
)
all_elements = [el.symbol for el in periodictable.elements] # full element list
wide_df = wide_df.reindex(columns=all_elements, fill_value=0)
dataset_index = wide_df.values
dataset_index = dataset_index / np.sum(dataset_index, axis=1)[:, None]
dataset_index = (
dataset_index / np.linalg.norm(dataset_index, axis=1)[:, None]
) # Normalize vectors
del train_df, extracted, wide_df
# Initialize the Dash app
app = dash.Dash(__name__, assets_folder=SETTINGS.ASSETS_PATH)
server = app.server # Expose the server for deployment
# Define the app layout
layout = html.Div(
[
WindowBreakpoints(
id="breakpoints",
widthBreakpointThresholdsPx=[800, 1200],
widthBreakpointNames=["sm", "md", "lg"],
),
html.H1(
html.B("Interactive Crystal Viewer"),
style={"textAlign": "center", "margin-top": "20px"},
),
html.Div(
[
html.Div(
[
html.Div(
"Search a material to display its structure and properties",
style={"textAlign": "center"},
),
],
id="structure-container",
style={
"width": "44%",
"verticalAlign": "top",
"boxShadow": "0px 4px 8px rgba(0, 0, 0, 0.1)",
"borderRadius": "10px",
"backgroundColor": "#f9f9f9",
"padding": "20px",
"textAlign": "center",
"display": "flex",
"justifyContent": "center",
"alignItems": "center",
},
),
html.Div(
id="properties-container",
style={
"width": "55%",
"paddingLeft": "4%",
"verticalAlign": "top",
"boxShadow": "0px 4px 8px rgba(0, 0, 0, 0.1)",
"borderRadius": "10px",
"backgroundColor": "#f9f9f9",
"padding": "20px",
"overflow": "auto",
"maxHeight": "600px",
"display": "flex",
"justifyContent": "center",
"wordWrap": "break-word",
},
children=[
html.Div(
"Properties will be displayed here",
style={"textAlign": "center"},
),
],
),
],
style={
"marginTop": "20px",
"display": "flex",
"justifyContent": "space-between", # Ensure the two sections are responsive
"flexWrap": "wrap",
},
),
html.Div(
[
html.Div(
[
html.H3("Search Materials (eg. 'Ac,Cd,Ge' or 'Ac2CdGe3')"),
html.Div(
[
html.Div(
[
dmp.MaterialsInput(
allowedInputTypes=["elements", "formula"],
hidePeriodicTable=False,
periodicTableMode="toggle",
hideWildcardButton=True,
showSubmitButton=True,
submitButtonText="Search",
type="elements",
id="materials-input",
),
],
id="materials-input-container",
style={
"width": "100%",
},
),
],
style={
"display": "flex",
"justifyContent": "center",
"width": "100%",
},
),
],
style={
"width": "48%",
"verticalAlign": "top",
},
),
html.Div(
[
html.Label(
"Select a row to display the material's structure and properties",
style={"margin-bottom": "20px"},
),
# dcc.Dropdown(
# id="material-dropdown",
# options=[], # Empty options initially
# value=None,
# ),
dash.dash_table.DataTable(
id="table",
columns=[
(
{"name": display_names[col], "id": col}
if col != "energy"
else {
"name": display_names[col],
"id": col,
"type": "numeric",
"format": {"specifier": ".2f"},
}
)
for col in display_columns
],
data=[{}],
style_cell={
"fontFamily": "Arial",
"padding": "10px",
"border": "1px solid #ddd", # Subtle border for elegance
"textAlign": "left",
"fontSize": "14px",
},
style_header={
"backgroundColor": "#f5f5f5", # Light grey header
"fontWeight": "bold",
"textAlign": "left",
"borderBottom": "2px solid #ddd",
},
style_data={
"backgroundColor": "#ffffff",
"color": "#333333",
"borderBottom": "1px solid #ddd",
},
style_data_conditional=[
{
"if": {"state": "active"},
"backgroundColor": "#e6f7ff",
"border": "1px solid #1890ff",
},
],
style_table={
"maxHeight": "400px",
"overflowX": "auto",
"overflowY": "auto",
},
style_as_list_view=True,
row_selectable="single",
selected_rows=[],
),
],
style={
"width": "48%",
# "maxWidth": "800px",
"margin": "0 auto",
"padding": "20px",
"backgroundColor": "#ffffff",
"borderRadius": "10px",
"boxShadow": "0px 4px 8px rgba(0, 0, 0, 0.1)",
},
),
],
style={
"margin-top": "20px",
"margin-bottom": "20px",
"display": "flex",
"flexDirection": "row",
"alignItems": "center",
},
),
# html.Button("Display Material", id="display-button", n_clicks=0),
],
style={
"margin-left": "10px",
"margin-right": "10px",
},
)
def search_materials(query):
query_vector = np.zeros(n_elements)
if "," in query:
element_list = [el.strip() for el in query.split(",")]
for el in element_list:
query_vector[map_periodic_table[el]] = 1
else:
# Formula
import re
matches = re.findall(r"([A-Z][a-z]{0,2})(\d*)", query)
for el, numb in matches:
numb = int(numb) if numb else 1
query_vector[map_periodic_table[el]] = numb
similarity = np.dot(dataset_index, query_vector) / (np.linalg.norm(query_vector))
indices = np.argsort(similarity)[::-1][:top_k]
options = [dataset[int(i)] for i in indices]
mapping_table_idx_dataset_idx.clear()
for i, idx in enumerate(indices):
mapping_table_idx_dataset_idx[int(i)] = int(idx)
return options
# Callback to update the table based on search
@app.callback(
Output("table", "data"),
Input("materials-input", "submitButtonClicks"),
Input("materials-input", "value"),
)
def on_submit_materials_input(n_clicks, query):
if n_clicks is None or not query:
return []
entries = search_materials(query)
return [{col: entry[col] for col in display_columns} for entry in entries]
# Callback to display the selected material
@app.callback(
[
Output("structure-container", "children"),
Output("properties-container", "children"),
],
# Input("display-button", "n_clicks"),
Input("table", "active_cell"),
Input("table", "derived_virtual_selected_rows"),
)
def display_material(active_cell, selected_rows):
if not active_cell and not selected_rows:
return (
html.Div(
"Search a material to display its structure and properties",
style={"textAlign": "center"},
),
html.Div(
"Properties will be displayed here",
style={"textAlign": "center"},
),
)
if len(selected_rows) > 0:
idx_active = selected_rows[0]
else:
idx_active = active_cell["row"]
row = dataset[mapping_table_idx_dataset_idx[idx_active]]
structure = Structure(
[x for y in row["lattice_vectors"] for x in y],
row["species_at_sites"],
row["cartesian_site_positions"],
coords_are_cartesian=True,
)
if row['magnetic_moments']:
structure.add_site_property('magmom',row['magnetic_moments'])
sga = SpacegroupAnalyzer(structure)
# Create the StructureMoleculeComponent
structure_component = ctc.StructureMoleculeComponent(structure)
# Extract key properties
properties = {
"Material ID": row["immutable_id"],
"Formula": row["chemical_formula_descriptive"],
"Energy per atom (eV/atom)": round(row["energy"] / len(row["species_at_sites"]), 3),
# "Band Gap (eV)": row["band_gap_direct"] or row["band_gap_indirect"], #future release
"Total Magnetization (μB)": row["total_magnetization"],
"Density (g/cm^3)": round(structure.density, 3),
"Fermi energy level (eV)": row["dos_ef"],
"Crystal system": sga.get_crystal_system(),
"International Spacegroup": sga.get_symmetry_dataset().international,
"Magnetic moments (μB/f.u.)": np.round(row["magnetic_moments"], 3),
"Stress tensor (kB)": row["stress_tensor"],
"Forces on atoms (eV/A)": np.round(row["forces"], 3),
# "Bader charges (e-)": np.round(row["charges"], 3), # future release
"DFT Functional": row["functional"],
}
# Format properties as an HTML table
properties_html = html.Table(
[
html.Tbody(
[
html.Tr(
[
html.Th(
key,
style={
"padding": "10px",
"verticalAlign": "middle",
},
),
html.Td(
str(value),
style={
"padding": "10px",
"borderBottom": "1px solid #ddd",
},
),
],
)
for key, value in properties.items()
],
)
],
style={
"width": "100%",
"borderCollapse": "collapse",
"fontFamily": "'Arial', sans-serif",
"fontSize": "14px",
"color": "#333333",
},
)
return structure_component.layout(), properties_html
@app.callback(
Output("materials-input-container", "children"),
Input("breakpoints", "widthBreakpoint"),
State("breakpoints", "width"),
)
def update_materials_input_layout(breakpoint_name, width):
if breakpoint_name in ["lg", "md"]:
# Default layout if no page size is detected
return dmp.MaterialsInput(
allowedInputTypes=["elements", "formula"],
hidePeriodicTable=False,
periodicTableMode="toggle",
hideWildcardButton=True,
showSubmitButton=True,
submitButtonText="Search",
type="elements",
id="materials-input",
)
elif breakpoint_name == "sm":
return dmp.MaterialsInput(
allowedInputTypes=["elements", "formula"],
hidePeriodicTable=True,
periodicTableMode="none",
hideWildcardButton=False,
showSubmitButton=False,
# submitButtonText="Search",
type="elements",
id="materials-input",
)
# Register crystal toolkit with the app
ctc.register_crystal_toolkit(app, layout)
if __name__ == "__main__":
app.run_server(debug=True, port=7860, host="0.0.0.0")
|