File size: 6,480 Bytes
f121890
 
e6e9684
f121890
e6e9684
 
f121890
68c303a
20d40ec
e6e9684
20d40ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6e9684
20d40ec
 
f121890
20d40ec
 
 
f121890
 
 
 
 
 
e6e9684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f121890
e6e9684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f121890
 
 
 
20d40ec
 
 
 
 
 
 
e6e9684
 
 
 
 
 
 
20d40ec
f121890
 
 
 
 
e6e9684
 
 
f121890
 
 
 
 
 
 
e6e9684
f121890
 
 
 
e6e9684
 
 
 
 
 
f121890
 
 
e6e9684
20d40ec
 
e6e9684
 
 
 
 
 
f121890
 
20d40ec
f121890
 
 
20d40ec
 
e6e9684
20d40ec
 
f121890
 
 
e6e9684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f121890
 
 
 
 
 
 
e6e9684
3dde8a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os

import crystal_toolkit.components as ctc
import dash
from crystal_toolkit.settings import SETTINGS
from dash import dcc, html
from dash.dependencies import Input, Output, State
from datasets import load_dataset
from pymatgen.core import Structure
from pymatgen.ext.matproj import MPRester

HF_TOKEN = os.environ.get("HF_TOKEN")

# Load only the train split of the dataset
dataset = load_dataset(
    "LeMaterial/leDataset",
    token=HF_TOKEN,
    split="train",
    columns=[
        "lattice_vectors",
        "species_at_sites",
        "cartesian_site_positions",
        "energy",
        "energy_corrected",
        "immutable_id",
        "elements",
        "functional",
        "stress_tensor",
        "magnetic_moments",
        "forces",
        "band_gap_direct",
        "band_gap_indirect",
        "dos_ef",
        "charges",
        "functional",
        "chemical_formula_reduced",
        "chemical_formula_descriptive",
        "total_magnetization",
    ],
)

# Convert the train split to a pandas DataFrame
train_df = dataset.to_pandas()
del dataset

# Initialize the Dash app
app = dash.Dash(__name__, assets_folder=SETTINGS.ASSETS_PATH)
server = app.server  # Expose the server for deployment

# Define the app layout
layout = html.Div(
    [
        dcc.Markdown("## Interactive Crystal Viewer"),
        html.Div(
            [
                html.Div(
                    [
                        html.Label("Search by Chemical System (e.g., 'Ac-Cd-Ge')"),
                        dcc.Input(
                            id="query-input",
                            type="text",
                            value="Ac-Cd-Ge",
                            placeholder="Ac-Cd-Ge",
                            style={"width": "100%"},
                        ),
                    ],
                    style={
                        "width": "70%",
                        "display": "inline-block",
                        "verticalAlign": "top",
                    },
                ),
                html.Div(
                    [
                        html.Button("Search", id="search-button", n_clicks=0),
                    ],
                    style={
                        "width": "28%",
                        "display": "inline-block",
                        "paddingLeft": "2%",
                        "verticalAlign": "top",
                    },
                ),
            ],
            style={"margin-bottom": "20px"},
        ),
        html.Div(
            [
                html.Label("Select Material"),
                dcc.Dropdown(
                    id="material-dropdown",
                    options=[],  # Empty options initially
                    value=None,
                ),
            ],
            style={"margin-bottom": "20px"},
        ),
        html.Button("Display Material", id="display-button", n_clicks=0),
        html.Div(
            [
                html.Div(
                    id="structure-container",
                    style={
                        "width": "48%",
                        "display": "inline-block",
                        "verticalAlign": "top",
                    },
                ),
                html.Div(
                    id="properties-container",
                    style={
                        "width": "48%",
                        "display": "inline-block",
                        "paddingLeft": "4%",
                        "verticalAlign": "top",
                    },
                ),
            ],
            style={"margin-top": "20px"},
        ),
    ]
)


# Function to search for materials
def search_materials(query):
    element_list = [el.strip() for el in query.split("-")]
    isubset = lambda x: set(x).issubset(element_list)
    isintersection = lambda x: len(set(x).intersection(element_list)) > 0
    entries_df = train_df[
        [isintersection(l) and isubset(l) for l in train_df.elements.values.tolist()]
    ]

    options = [
        {
            "label": f"{res.chemical_formula_reduced} ({res.immutable_id}) Calculated with {res.functional}",
            "value": n,
        }
        for n, res in entries_df.iterrows()
    ]
    del entries_df
    return options


# Callback to update the material dropdown based on search
@app.callback(
    [Output("material-dropdown", "options"), Output("material-dropdown", "value")],
    Input("search-button", "n_clicks"),
    State("query-input", "value"),
)
def update_material_dropdown(n_clicks, query):
    if n_clicks is None or not query:
        return [], None
    options = search_materials(query)
    if not options:
        return [], None
    return options, options[0]["value"]


# Callback to display the selected material
@app.callback(
    [
        Output("structure-container", "children"),
        Output("properties-container", "children"),
    ],
    Input("display-button", "n_clicks"),
    State("material-dropdown", "value"),
)
def display_material(n_clicks, material_id):
    if n_clicks is None or not material_id:
        return "", ""
    row = train_df.iloc[material_id]

    structure = Structure(
        [x for y in row["lattice_vectors"] for x in y],
        row["species_at_sites"],
        row["cartesian_site_positions"],
        coords_are_cartesian=True,
    )

    # Create the StructureMoleculeComponent
    structure_component = ctc.StructureMoleculeComponent(structure)

    # Extract key properties
    properties = {
        "Material ID": row.immutable_id,
        "Formula": row.chemical_formula_descriptive,
        "Energy per atom (eV/atom)": row.energy / len(row.species_at_sites),
        "Band Gap (eV)": row.band_gap_direct or row.band_gap_indirect,
        "Total Magnetization (μB/f.u.)": row.total_magnetization,
    }

    # Format properties as an HTML table
    properties_html = html.Table(
        [
            html.Tbody(
                [
                    html.Tr([html.Th(key), html.Td(str(value))])
                    for key, value in properties.items()
                ]
            )
        ],
        style={
            "border": "1px solid black",
            "width": "100%",
            "borderCollapse": "collapse",
        },
    )

    return structure_component.layout(), properties_html


# Register crystal toolkit with the app
ctc.register_crystal_toolkit(app, layout)

if __name__ == "__main__":
    app.run_server(debug=True, port=7860, host="0.0.0.0")