Spaces:
Running
Running
File size: 8,017 Bytes
f121890 e6e9684 f121890 1366f26 e6e9684 f121890 68c303a 20d40ec e6e9684 20d40ec 2dd66b7 20d40ec e6e9684 20d40ec f121890 2dd66b7 f121890 e6e9684 1366f26 e6e9684 1366f26 2dd66b7 1366f26 2dd66b7 1366f26 e6e9684 1366f26 e6e9684 f121890 e6e9684 2dd66b7 e6e9684 1366f26 f121890 2dd66b7 f121890 2dd66b7 a91474f 2dd66b7 a91474f 2dd66b7 f121890 e6e9684 2dd66b7 f121890 2dd66b7 e6e9684 2dd66b7 20d40ec e6e9684 f121890 20d40ec f121890 2dd66b7 f121890 e6e9684 f121890 e6e9684 3dde8a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
import crystal_toolkit.components as ctc
import dash
import dash_mp_components as dmp
from crystal_toolkit.settings import SETTINGS
from dash import dcc, html
from dash.dependencies import Input, Output, State
from datasets import load_dataset
from pymatgen.core import Structure
from pymatgen.ext.matproj import MPRester
HF_TOKEN = os.environ.get("HF_TOKEN")
top_k = 100
# Load only the train split of the dataset
dataset = load_dataset(
"LeMaterial/leDataset",
token=HF_TOKEN,
split="train",
columns=[
"lattice_vectors",
"species_at_sites",
"cartesian_site_positions",
"energy",
"energy_corrected",
"immutable_id",
"elements",
"functional",
"stress_tensor",
"magnetic_moments",
"forces",
"band_gap_direct",
"band_gap_indirect",
"dos_ef",
"charges",
"functional",
"chemical_formula_reduced",
"chemical_formula_descriptive",
"total_magnetization",
],
)
display_columns = [
"chemical_formula_descriptive",
"functional",
"immutable_id",
"energy",
]
display_names = {
"chemical_formula_descriptive": "Formula",
"functional": "Functional",
"immutable_id": "Material ID",
"energy": "Energy (eV)",
}
mapping_table_idx_dataset_idx = {}
import numpy as np
import periodictable
map_periodic_table = {v.symbol: k for k, v in enumerate(periodictable.elements)}
# import re
#
# dataset_index = np.zeros((len(dataset), 118))
# import tqdm
#
# for i, row in tqdm.tqdm(enumerate(dataset), total=len(dataset)):
# for el in row["chemical_formula_descriptive"].split(" "):
# matches = re.findall(r"([a-zA-Z]+)([0-9]*)", el)
# el = matches[0][0]
# numb = int(matches[0][1]) if matches[0][1] else 1
# dataset_index[i][map_periodic_table[el]] = numb
dataset_index = np.load("dataset_index.npy")
# Initialize the Dash app
app = dash.Dash(__name__, assets_folder=SETTINGS.ASSETS_PATH)
server = app.server # Expose the server for deployment
# Define the app layout
layout = html.Div(
[
html.H1("Interactive Crystal Viewer"),
html.Div(
[
html.Div(
[
html.H3("Search for materials by elements (eg. 'Ac,Cd,Ge')"),
dmp.MaterialsInput(
allowedInputTypes=["elements", "formula"],
hidePeriodicTable=False,
periodicTableMode="toggle",
showSubmitButton=True,
submitButtonText="Search",
type="elements",
id="materials-input",
),
],
style={
"width": "100%",
"display": "inline-block",
"verticalAlign": "top",
},
),
],
style={"margin-bottom": "20px"},
),
html.Div(
[
html.Label("Select Material"),
# dcc.Dropdown(
# id="material-dropdown",
# options=[], # Empty options initially
# value=None,
# ),
dash.dash_table.DataTable(
id="table",
columns=[
{"name": display_names[col], "id": col}
for col in display_columns
],
data=[{}],
style_table={
"overflowX": "auto",
"height": "400px",
"overflowY": "auto",
},
style_cell={"textAlign": "left"},
),
],
style={"margin-bottom": "20px"},
),
html.Button("Display Material", id="display-button", n_clicks=0),
html.Div(
[
html.Div(
id="structure-container",
style={
"width": "48%",
"display": "inline-block",
"verticalAlign": "top",
},
),
html.Div(
id="properties-container",
style={
"width": "48%",
"display": "inline-block",
"paddingLeft": "4%",
"verticalAlign": "top",
},
),
],
style={"margin-top": "20px"},
),
],
style={
"margin-left": "10px",
"margin-right": "10px",
},
)
def search_materials(query):
query_vector = np.zeros(118)
if "," in query:
element_list = [el.strip() for el in query.split(",")]
for el in element_list:
query_vector[map_periodic_table[el]] = 1
else:
# Formula
import re
matches = re.findall(r"([A-Z][a-z]{0,2})(\d*)", query)
for el, numb in matches:
numb = int(numb) if numb else 1
query_vector[map_periodic_table[el]] = numb
similarity = np.dot(dataset_index, query_vector) / (
np.linalg.norm(dataset_index) * np.linalg.norm(query_vector)
)
print(similarity[::-1][:top_k])
indices = np.argsort(similarity)[::-1][:top_k]
options = [dataset[int(i)] for i in indices]
mapping_table_idx_dataset_idx.clear()
for i, idx in enumerate(indices):
mapping_table_idx_dataset_idx[int(i)] = int(idx)
return options
# Callback to update the table based on search
@app.callback(
Output("table", "data"),
Input("materials-input", "submitButtonClicks"),
Input("materials-input", "value"),
)
def on_submit_materials_input(n_clicks, query):
if n_clicks is None or not query:
return []
entries = search_materials(query)
print(len(entries))
return [{col: entry[col] for col in display_columns} for entry in entries]
# Callback to display the selected material
@app.callback(
[
Output("structure-container", "children"),
Output("properties-container", "children"),
],
Input("display-button", "n_clicks"),
Input("table", "active_cell"),
)
def display_material(n_clicks, active_cell):
if n_clicks is None or not active_cell:
return "", ""
idx_active = active_cell["row"]
row = dataset[mapping_table_idx_dataset_idx[idx_active]]
structure = Structure(
[x for y in row["lattice_vectors"] for x in y],
row["species_at_sites"],
row["cartesian_site_positions"],
coords_are_cartesian=True,
)
# Create the StructureMoleculeComponent
structure_component = ctc.StructureMoleculeComponent(structure)
# Extract key properties
properties = {
"Material ID": row["immutable_id"],
"Formula": row["chemical_formula_descriptive"],
"Energy per atom (eV/atom)": row["energy"] / len(row["species_at_sites"]),
"Band Gap (eV)": row["band_gap_direct"] or row["band_gap_indirect"],
"Total Magnetization (μB/f.u.)": row["total_magnetization"],
}
# Format properties as an HTML table
properties_html = html.Table(
[
html.Tbody(
[
html.Tr([html.Th(key), html.Td(str(value))])
for key, value in properties.items()
]
)
],
style={
"border": "1px solid black",
"width": "100%",
"borderCollapse": "collapse",
},
)
return structure_component.layout(), properties_html
# Register crystal toolkit with the app
ctc.register_crystal_toolkit(app, layout)
if __name__ == "__main__":
app.run_server(debug=True, port=7860, host="0.0.0.0")
|