File size: 5,247 Bytes
f121890
 
 
 
 
 
 
 
20d40ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f121890
20d40ec
 
 
f121890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20d40ec
 
 
 
 
 
 
 
 
f121890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20d40ec
 
 
 
 
 
f121890
 
20d40ec
f121890
 
 
20d40ec
 
 
 
 
f121890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dde8a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
from pymatgen.ext.matproj import MPRester
import crystal_toolkit.components as ctc
from crystal_toolkit.settings import SETTINGS

import dash
from dash import html, dcc
from dash.dependencies import Input, Output, State
from pymatgen.core import Structure

HF_TOKEN = os.environ.get("HF_TOKEN")

# Load only the train split of the dataset
dataset = load_dataset(
    "LeMaterial/leDataset",
    token=HF_TOKEN,
    split="train",
    columns=[
        "lattice_vectors",
        "species_at_sites",
        "cartesian_site_positions",
        "energy",
        "energy_corrected",
        "immutable_id",
        "elements",
        "functional",
        "stress_tensor",
        "magnetic_moments",
        "forces",
        "band_gap_direct",
        "band_gap_indirect",
        "dos_ef",
        "charges",
        "functional",
        "chemical_formula_reduced",
        "chemical_formula_descriptive",
        "total_magnetization"
    ],
)

# Convert the train split to a pandas DataFrame
train_df = dataset.to_pandas()
del dataset

# Initialize the Dash app
app = dash.Dash(__name__, assets_folder=SETTINGS.ASSETS_PATH)
server = app.server  # Expose the server for deployment

# Define the app layout
layout = html.Div([
    dcc.Markdown("## Interactive Crystal Viewer"),
    html.Div([
        html.Div([
            html.Label("Search by Chemical System (e.g., 'Ac-Cd-Ge')"),
            dcc.Input(
                id='query-input',
                type='text',
                value='Ac-Cd-Ge',
                placeholder='Ac-Cd-Ge',
                style={'width': '100%'}
            ),
        ], style={'width': '70%', 'display': 'inline-block', 'verticalAlign': 'top'}),
        html.Div([
            html.Button('Search', id='search-button', n_clicks=0),
        ], style={'width': '28%', 'display': 'inline-block', 'paddingLeft': '2%', 'verticalAlign': 'top'}),
    ], style={'margin-bottom': '20px'}),
    html.Div([
        html.Label("Select Material"),
        dcc.Dropdown(
            id='material-dropdown',
            options=[],  # Empty options initially
            value=None
        ),
    ], style={'margin-bottom': '20px'}),
    html.Button('Display Material', id='display-button', n_clicks=0),
    html.Div([
        html.Div(id='structure-container', style={'width': '48%', 'display': 'inline-block', 'verticalAlign': 'top'}),
        html.Div(id='properties-container',
                 style={'width': '48%', 'display': 'inline-block', 'paddingLeft': '4%', 'verticalAlign': 'top'}),
    ], style={'margin-top': '20px'}),
])


# Function to search for materials
def search_materials(query):
    element_list = [el.strip() for el in query.split("-")]
    isubset = lambda x: set(x).issubset(element_list)
    isintersection = lambda x: len(set(x).intersection(element_list)) > 0
    entries_df = train_df[
        [isintersection(l) and isubset(l) for l in train_df.elements.values.tolist()]
    ]

    options = [{'label': f"{res.chemical_formula_reduced} ({res.immutable_id}) Calculated with {res.functional}", 'value': n} for n,res in entries_df.iterrows()]
    del entries_df
    return options


# Callback to update the material dropdown based on search
@app.callback(
    [Output('material-dropdown', 'options'),
     Output('material-dropdown', 'value')],
    Input('search-button', 'n_clicks'),
    State('query-input', 'value'),
)
def update_material_dropdown(n_clicks, query):
    if n_clicks is None or not query:
        return [], None
    options = search_materials(query)
    if not options:
        return [], None
    return options, options[0]['value']


# Callback to display the selected material
@app.callback(
    [Output('structure-container', 'children'),
     Output('properties-container', 'children')],
    Input('display-button', 'n_clicks'),
    State('material-dropdown', 'value')
)
def display_material(n_clicks, material_id):
    if n_clicks is None or not material_id:
        return '', ''
    row = train_df.iloc[material_id]

    structure = Structure([x for y in row['lattice_vectors'] for x in y],
                          row['species_at_sites'],
                          row['cartesian_site_positions'],
                          coords_are_cartesian= True)

    # Create the StructureMoleculeComponent
    structure_component = ctc.StructureMoleculeComponent(structure)

    # Extract key properties
    properties = {
        "Material ID": row.immutable_id,
        "Formula": row.chemical_formula_descriptive,
        "Energy per atom (eV/atom)": row.energy/len(row.species_at_sites),
        "Band Gap (eV)": row.band_gap_direct or row.band_gap_indirect,
        "Total Magnetization (μB/f.u.)": row.total_magnetization,
    }

    # Format properties as an HTML table
    properties_html = html.Table([
        html.Tbody([
            html.Tr([html.Th(key), html.Td(str(value))]) for key, value in properties.items()
        ])
    ], style={'border': '1px solid black', 'width': '100%', 'borderCollapse': 'collapse'})

    return structure_component.layout(), properties_html


# Register crystal toolkit with the app
ctc.register_crystal_toolkit(app, layout)

if __name__ == '__main__':
    app.run_server(debug=True, port=7860, host="0.0.0.0")