LanguageBind / v_cls /datasets.py
LinB203
add project files
5c98ca3
# pylint: disable=line-too-long,too-many-lines,missing-docstring
import os
import warnings
import numpy as np
import pandas as pd
import torch
from torch.utils.data import Dataset
from torchvision import transforms
from . import video_transforms, volume_transforms
from .loader import get_image_loader, get_video_loader
from .random_erasing import RandomErasing
class VideoClsDataset(Dataset):
"""Load your own video classification dataset."""
def __init__(self,
anno_path,
data_root='',
mode='train',
clip_len=8,
frame_sample_rate=2,
crop_size=224,
short_side_size=256,
new_height=256,
new_width=340,
keep_aspect_ratio=True,
num_segment=1,
num_crop=1,
test_num_segment=10,
test_num_crop=3,
sparse_sample=False,
args=None):
self.anno_path = anno_path
self.data_root = data_root
self.mode = mode
self.clip_len = clip_len
self.frame_sample_rate = frame_sample_rate
self.crop_size = crop_size
self.short_side_size = short_side_size
self.new_height = new_height
self.new_width = new_width
self.keep_aspect_ratio = keep_aspect_ratio
self.num_segment = num_segment
self.test_num_segment = test_num_segment
self.num_crop = num_crop
self.test_num_crop = test_num_crop
self.sparse_sample = sparse_sample
self.args = args
self.aug = False
self.rand_erase = False
if self.mode in ['train']:
self.aug = True
if self.args.reprob > 0:
self.rand_erase = True
self.video_loader = get_video_loader()
cleaned = pd.read_csv(self.anno_path, header=None, delimiter=' ')
self.dataset_samples = list(
cleaned[0].apply(lambda row: os.path.join(self.data_root, row)))
self.label_array = list(cleaned.values[:, 1])
if (mode == 'train'):
pass
elif (mode == 'validation'):
self.data_transform = video_transforms.Compose([
video_transforms.Resize(
self.short_side_size, interpolation='bilinear'),
video_transforms.CenterCrop(
size=(self.crop_size, self.crop_size)),
volume_transforms.ClipToTensor(),
video_transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
elif mode == 'test':
self.data_resize = video_transforms.Compose([
video_transforms.Resize(
size=(short_side_size), interpolation='bilinear')
])
self.data_transform = video_transforms.Compose([
volume_transforms.ClipToTensor(),
video_transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.test_seg = []
self.test_dataset = []
self.test_label_array = []
for ck in range(self.test_num_segment):
for cp in range(self.test_num_crop):
for idx in range(len(self.label_array)):
sample_label = self.label_array[idx]
self.test_label_array.append(sample_label)
self.test_dataset.append(self.dataset_samples[idx])
self.test_seg.append((ck, cp))
def __getitem__(self, index):
if self.mode == 'train':
args = self.args
scale_t = 1
sample = self.dataset_samples[index]
# T H W C
buffer = self.load_video(sample, sample_rate_scale=scale_t)
if len(buffer) == 0:
while len(buffer) == 0:
warnings.warn(
"video {} not correctly loaded during training".format(
sample))
index = np.random.randint(self.__len__())
sample = self.dataset_samples[index]
buffer = self.load_video(sample, sample_rate_scale=scale_t)
if args.num_sample > 1:
frame_list = []
label_list = []
index_list = []
for _ in range(args.num_sample):
new_frames = self._aug_frame(buffer, args)
label = self.label_array[index]
frame_list.append(new_frames)
label_list.append(label)
index_list.append(index)
return frame_list, label_list, index_list, {}
else:
buffer = self._aug_frame(buffer, args)
return buffer, self.label_array[index], index, {}
elif self.mode == 'validation':
sample = self.dataset_samples[index]
buffer = self.load_video(sample)
if len(buffer) == 0:
while len(buffer) == 0:
warnings.warn(
"video {} not correctly loaded during validation".
format(sample))
index = np.random.randint(self.__len__())
sample = self.dataset_samples[index]
buffer = self.load_video(sample)
buffer = self.data_transform(buffer)
return buffer, self.label_array[index], sample.split(
"/")[-1].split(".")[0]
elif self.mode == 'test':
sample = self.test_dataset[index]
chunk_nb, split_nb = self.test_seg[index]
buffer = self.load_video(sample)
while len(buffer) == 0:
warnings.warn(
"video {}, temporal {}, spatial {} not found during testing"
.format(str(self.test_dataset[index]), chunk_nb, split_nb))
index = np.random.randint(self.__len__())
sample = self.test_dataset[index]
chunk_nb, split_nb = self.test_seg[index]
buffer = self.load_video(sample)
buffer = self.data_resize(buffer)
if isinstance(buffer, list):
buffer = np.stack(buffer, 0)
if self.sparse_sample:
spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) -
self.short_side_size) / (
self.test_num_crop - 1)
temporal_start = chunk_nb
spatial_start = int(split_nb * spatial_step)
if buffer.shape[1] >= buffer.shape[2]:
buffer = buffer[temporal_start::self.test_num_segment,
spatial_start:spatial_start +
self.short_side_size, :, :]
else:
buffer = buffer[temporal_start::self.test_num_segment, :,
spatial_start:spatial_start +
self.short_side_size, :]
else:
spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) -
self.short_side_size) / (
self.test_num_crop - 1)
temporal_step = max(
1.0 * (buffer.shape[0] - self.clip_len) /
(self.test_num_segment - 1), 0)
temporal_start = int(chunk_nb * temporal_step)
spatial_start = int(split_nb * spatial_step)
if buffer.shape[1] >= buffer.shape[2]:
buffer = buffer[temporal_start:temporal_start +
self.clip_len,
spatial_start:spatial_start +
self.short_side_size, :, :]
else:
buffer = buffer[temporal_start:temporal_start +
self.clip_len, :,
spatial_start:spatial_start +
self.short_side_size, :]
buffer = self.data_transform(buffer)
return buffer, self.test_label_array[index], sample.split(
"/")[-1].split(".")[0], chunk_nb, split_nb
else:
raise NameError('mode {} unkown'.format(self.mode))
def _aug_frame(self, buffer, args):
aug_transform = video_transforms.create_random_augment(
input_size=(self.crop_size, self.crop_size),
auto_augment=args.aa,
interpolation=args.train_interpolation,
)
buffer = [transforms.ToPILImage()(frame) for frame in buffer]
buffer = aug_transform(buffer)
buffer = [transforms.ToTensor()(img) for img in buffer]
buffer = torch.stack(buffer) # T C H W
buffer = buffer.permute(0, 2, 3, 1) # T H W C
# T H W C
buffer = tensor_normalize(buffer, [0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
# T H W C -> C T H W.
buffer = buffer.permute(3, 0, 1, 2)
# Perform data augmentation.
scl, asp = (
[0.08, 1.0],
[0.75, 1.3333],
)
buffer = spatial_sampling(
buffer,
spatial_idx=-1,
min_scale=256,
max_scale=320,
# crop_size=224,
crop_size=args.input_size,
random_horizontal_flip=False if args.data_set == 'SSV2' else True,
inverse_uniform_sampling=False,
aspect_ratio=asp,
scale=scl,
motion_shift=False)
if self.rand_erase:
erase_transform = RandomErasing(
args.reprob,
mode=args.remode,
max_count=args.recount,
num_splits=args.recount,
device="cpu",
)
buffer = buffer.permute(1, 0, 2, 3) # C T H W -> T C H W
buffer = erase_transform(buffer)
buffer = buffer.permute(1, 0, 2, 3) # T C H W -> C T H W
return buffer
def load_video(self, sample, sample_rate_scale=1):
fname = sample
try:
vr = self.video_loader(fname)
except Exception as e:
print(f"Failed to load video from {fname} with error {e}!")
return []
length = len(vr)
if self.mode == 'test':
if self.sparse_sample:
tick = length / float(self.num_segment)
all_index = []
for t_seg in range(self.test_num_segment):
tmp_index = [
int(t_seg * tick / self.test_num_segment + tick * x)
for x in range(self.num_segment)
]
all_index.extend(tmp_index)
all_index = list(np.sort(np.array(all_index)))
else:
all_index = [
x for x in range(0, length, self.frame_sample_rate)
]
while len(all_index) < self.clip_len:
all_index.append(all_index[-1])
vr.seek(0)
buffer = vr.get_batch(all_index).asnumpy()
return buffer
# handle temporal segments
converted_len = int(self.clip_len * self.frame_sample_rate)
seg_len = length // self.num_segment
all_index = []
for i in range(self.num_segment):
if seg_len <= converted_len:
index = np.linspace(
0, seg_len, num=seg_len // self.frame_sample_rate)
index = np.concatenate(
(index,
np.ones(self.clip_len - seg_len // self.frame_sample_rate)
* seg_len))
index = np.clip(index, 0, seg_len - 1).astype(np.int64)
else:
if self.mode == 'validation':
end_idx = (converted_len + seg_len) // 2
else:
end_idx = np.random.randint(converted_len, seg_len)
str_idx = end_idx - converted_len
index = np.linspace(str_idx, end_idx, num=self.clip_len)
index = np.clip(index, str_idx, end_idx - 1).astype(np.int64)
index = index + i * seg_len
all_index.extend(list(index))
all_index = all_index[::int(sample_rate_scale)]
vr.seek(0)
buffer = vr.get_batch(all_index).asnumpy()
return buffer
def __len__(self):
# return 200
if self.mode != 'test':
return len(self.dataset_samples)
else:
return len(self.test_dataset)
class RawFrameClsDataset(Dataset):
"""Load your own raw frame classification dataset."""
def __init__(self,
anno_path,
data_root,
mode='train',
clip_len=8,
crop_size=224,
short_side_size=256,
new_height=256,
new_width=340,
keep_aspect_ratio=True,
num_segment=1,
num_crop=1,
test_num_segment=10,
test_num_crop=3,
filename_tmpl='img_{:05}.jpg',
start_idx=1,
args=None):
self.anno_path = anno_path
self.data_root = data_root
self.mode = mode
self.clip_len = clip_len
self.crop_size = crop_size
self.short_side_size = short_side_size
self.new_height = new_height
self.new_width = new_width
self.keep_aspect_ratio = keep_aspect_ratio
self.num_segment = num_segment
self.test_num_segment = test_num_segment
self.num_crop = num_crop
self.test_num_crop = test_num_crop
self.filename_tmpl = filename_tmpl
self.start_idx = start_idx
self.args = args
self.aug = False
self.rand_erase = False
if self.mode in ['train']:
self.aug = True
if self.args.reprob > 0:
self.rand_erase = True
self.image_loader = get_image_loader()
cleaned = pd.read_csv(self.anno_path, header=None, delimiter=' ')
self.dataset_samples = list(
cleaned[0].apply(lambda row: os.path.join(self.data_root, row)))
self.total_frames = list(cleaned.values[:, 1])
self.label_array = list(cleaned.values[:, -1])
if (mode == 'train'):
pass
elif (mode == 'validation'):
self.data_transform = video_transforms.Compose([
video_transforms.Resize(
self.short_side_size, interpolation='bilinear'),
video_transforms.CenterCrop(
size=(self.crop_size, self.crop_size)),
volume_transforms.ClipToTensor(),
video_transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
elif mode == 'test':
self.data_resize = video_transforms.Compose([
video_transforms.Resize(
size=(short_side_size), interpolation='bilinear')
])
self.data_transform = video_transforms.Compose([
volume_transforms.ClipToTensor(),
video_transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.test_seg = []
self.test_dataset = []
self.test_total_frames = []
self.test_label_array = []
for ck in range(self.test_num_segment):
for cp in range(self.test_num_crop):
for idx in range(len(self.label_array)):
self.test_seg.append((ck, cp))
self.test_dataset.append(self.dataset_samples[idx])
self.test_total_frames.append(self.total_frames[idx])
self.test_label_array.append(self.label_array[idx])
def __getitem__(self, index):
if self.mode == 'train':
args = self.args
scale_t = 1
sample = self.dataset_samples[index]
total_frame = self.total_frames[index]
buffer = self.load_frame(
sample, total_frame, sample_rate_scale=scale_t) # T H W C
if len(buffer) == 0:
while len(buffer) == 0:
warnings.warn(
"video {} not correctly loaded during training".format(
sample))
index = np.random.randint(self.__len__())
sample = self.dataset_samples[index]
total_frame = self.total_frames[index]
buffer = self.load_frame(
sample, total_frame, sample_rate_scale=scale_t)
if args.num_sample > 1:
frame_list = []
label_list = []
index_list = []
for _ in range(args.num_sample):
new_frames = self._aug_frame(buffer, args)
label = self.label_array[index]
frame_list.append(new_frames)
label_list.append(label)
index_list.append(index)
return frame_list, label_list, index_list, {}
else:
buffer = self._aug_frame(buffer, args)
return buffer, self.label_array[index], index, {}
elif self.mode == 'validation':
sample = self.dataset_samples[index]
total_frame = self.total_frames[index]
buffer = self.load_frame(sample, total_frame)
if len(buffer) == 0:
while len(buffer) == 0:
warnings.warn(
"video {} not correctly loaded during validation".
format(sample))
index = np.random.randint(self.__len__())
sample = self.dataset_samples[index]
buffer = self.load_frame(sample, total_frame)
buffer = self.data_transform(buffer)
return buffer, self.label_array[index], sample.split(
"/")[-1].split(".")[0]
elif self.mode == 'test':
sample = self.test_dataset[index]
total_frame = self.test_total_frames[index]
chunk_nb, split_nb = self.test_seg[index]
buffer = self.load_frame(sample, total_frame)
while len(buffer) == 0:
warnings.warn(
"video {}, temporal {}, spatial {} not found during testing"
.format(str(self.test_dataset[index]), chunk_nb, split_nb))
index = np.random.randint(self.__len__())
sample = self.test_dataset[index]
total_frame = self.test_total_frames[index]
chunk_nb, split_nb = self.test_seg[index]
buffer = self.load_frame(sample, total_frame)
buffer = self.data_resize(buffer)
if isinstance(buffer, list):
buffer = np.stack(buffer, 0)
spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) -
self.short_side_size) / (
self.test_num_crop - 1)
temporal_start = chunk_nb
spatial_start = int(split_nb * spatial_step)
if buffer.shape[1] >= buffer.shape[2]:
buffer = buffer[temporal_start::self.test_num_segment,
spatial_start:spatial_start +
self.short_side_size, :, :]
else:
buffer = buffer[temporal_start::self.test_num_segment, :,
spatial_start:spatial_start +
self.short_side_size, :]
buffer = self.data_transform(buffer)
return buffer, self.test_label_array[index], sample.split(
"/")[-1].split(".")[0], chunk_nb, split_nb
else:
raise NameError('mode {} unkown'.format(self.mode))
def _aug_frame(self, buffer, args):
aug_transform = video_transforms.create_random_augment(
input_size=(self.crop_size, self.crop_size),
auto_augment=args.aa,
interpolation=args.train_interpolation,
)
buffer = [transforms.ToPILImage()(frame) for frame in buffer]
buffer = aug_transform(buffer)
buffer = [transforms.ToTensor()(img) for img in buffer]
buffer = torch.stack(buffer) # T C H W
buffer = buffer.permute(0, 2, 3, 1) # T H W C
# T H W C
buffer = tensor_normalize(buffer, [0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
# T H W C -> C T H W.
buffer = buffer.permute(3, 0, 1, 2)
# Perform data augmentation.
scl, asp = (
[0.08, 1.0],
[0.75, 1.3333],
)
buffer = spatial_sampling(
buffer,
spatial_idx=-1,
min_scale=256,
max_scale=320,
crop_size=self.crop_size,
random_horizontal_flip=False if args.data_set == 'SSV2' else True,
inverse_uniform_sampling=False,
aspect_ratio=asp,
scale=scl,
motion_shift=False)
if self.rand_erase:
erase_transform = RandomErasing(
args.reprob,
mode=args.remode,
max_count=args.recount,
num_splits=args.recount,
device="cpu",
)
buffer = buffer.permute(1, 0, 2, 3)
buffer = erase_transform(buffer)
buffer = buffer.permute(1, 0, 2, 3)
return buffer
def load_frame(self, sample, num_frames, sample_rate_scale=1):
"""Load video content using Decord"""
fname = sample
if self.mode == 'test':
tick = num_frames / float(self.num_segment)
all_index = []
for t_seg in range(self.test_num_segment):
tmp_index = [
int(t_seg * tick / self.test_num_segment + tick * x)
for x in range(self.num_segment)
]
all_index.extend(tmp_index)
all_index = list(np.sort(np.array(all_index) + self.start_idx))
imgs = []
for idx in all_index:
frame_fname = os.path.join(fname,
self.filename_tmpl.format(idx))
img = self.image_loader(frame_fname)
imgs.append(img)
buffer = np.array(imgs)
return buffer
# handle temporal segments
average_duration = num_frames // self.num_segment
all_index = []
if average_duration > 0:
if self.mode == 'validation':
all_index = list(
np.multiply(
list(range(self.num_segment)), average_duration) +
np.ones(self.num_segment, dtype=int) *
(average_duration // 2))
else:
all_index = list(
np.multiply(
list(range(self.num_segment)), average_duration) +
np.random.randint(average_duration, size=self.num_segment))
elif num_frames > self.num_segment:
if self.mode == 'validation':
all_index = list(range(self.num_segment))
else:
all_index = list(
np.sort(
np.random.randint(num_frames, size=self.num_segment)))
else:
all_index = [0] * (self.num_segment - num_frames) + list(
range(num_frames))
all_index = list(np.array(all_index) + self.start_idx)
imgs = []
for idx in all_index:
frame_fname = os.path.join(fname, self.filename_tmpl.format(idx))
img = self.image_loader(frame_fname)
imgs.append(img)
buffer = np.array(imgs)
return buffer
def __len__(self):
if self.mode != 'test':
return len(self.dataset_samples)
else:
return len(self.test_dataset)
def spatial_sampling(
frames,
spatial_idx=-1,
min_scale=256,
max_scale=320,
crop_size=224,
random_horizontal_flip=True,
inverse_uniform_sampling=False,
aspect_ratio=None,
scale=None,
motion_shift=False,
):
"""
Perform spatial sampling on the given video frames. If spatial_idx is
-1, perform random scale, random crop, and random flip on the given
frames. If spatial_idx is 0, 1, or 2, perform spatial uniform sampling
with the given spatial_idx.
Args:
frames (tensor): frames of images sampled from the video. The
dimension is `num frames` x `height` x `width` x `channel`.
spatial_idx (int): if -1, perform random spatial sampling. If 0, 1,
or 2, perform left, center, right crop if width is larger than
height, and perform top, center, buttom crop if height is larger
than width.
min_scale (int): the minimal size of scaling.
max_scale (int): the maximal size of scaling.
crop_size (int): the size of height and width used to crop the
frames.
inverse_uniform_sampling (bool): if True, sample uniformly in
[1 / max_scale, 1 / min_scale] and take a reciprocal to get the
scale. If False, take a uniform sample from [min_scale,
max_scale].
aspect_ratio (list): Aspect ratio range for resizing.
scale (list): Scale range for resizing.
motion_shift (bool): Whether to apply motion shift for resizing.
Returns:
frames (tensor): spatially sampled frames.
"""
assert spatial_idx in [-1, 0, 1, 2]
if spatial_idx == -1:
if aspect_ratio is None and scale is None:
frames, _ = video_transforms.random_short_side_scale_jitter(
images=frames,
min_size=min_scale,
max_size=max_scale,
inverse_uniform_sampling=inverse_uniform_sampling,
)
frames, _ = video_transforms.random_crop(frames, crop_size)
else:
transform_func = (
video_transforms.random_resized_crop_with_shift
if motion_shift else video_transforms.random_resized_crop)
frames = transform_func(
images=frames,
target_height=crop_size,
target_width=crop_size,
scale=scale,
ratio=aspect_ratio,
)
if random_horizontal_flip:
frames, _ = video_transforms.horizontal_flip(0.5, frames)
else:
# The testing is deterministic and no jitter should be performed.
# min_scale, max_scale, and crop_size are expect to be the same.
assert len({min_scale, max_scale, crop_size}) == 1
frames, _ = video_transforms.random_short_side_scale_jitter(
frames, min_scale, max_scale)
frames, _ = video_transforms.uniform_crop(frames, crop_size,
spatial_idx)
return frames
def tensor_normalize(tensor, mean, std):
"""
Normalize a given tensor by subtracting the mean and dividing the std.
Args:
tensor (tensor): tensor to normalize.
mean (tensor or list): mean value to subtract.
std (tensor or list): std to divide.
"""
if tensor.dtype == torch.uint8:
tensor = tensor.float()
tensor = tensor / 255.0
if type(mean) == list:
mean = torch.tensor(mean)
if type(std) == list:
std = torch.tensor(std)
tensor = tensor - mean
tensor = tensor / std
return tensor