Spaces:
Running
on
Zero
Running
on
Zero
chore: implement presets in main app
#3
by
LPX55
- opened
- app_local.py +116 -143
app_local.py
CHANGED
@@ -6,6 +6,8 @@ import spaces
|
|
6 |
from PIL import Image
|
7 |
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
|
8 |
from diffusers.utils import is_xformers_available
|
|
|
|
|
9 |
import os
|
10 |
import sys
|
11 |
import re
|
@@ -85,7 +87,6 @@ Please provide the rewritten instruction in a clean `json` format as:
|
|
85 |
}
|
86 |
'''
|
87 |
|
88 |
-
|
89 |
def extract_json_response(model_output: str) -> str:
|
90 |
"""Extract rewritten instruction from potentially messy JSON output"""
|
91 |
# Remove code block markers first
|
@@ -94,19 +95,15 @@ def extract_json_response(model_output: str) -> str:
|
|
94 |
# Find the JSON portion in the output
|
95 |
start_idx = model_output.find('{')
|
96 |
end_idx = model_output.rfind('}')
|
97 |
-
|
98 |
# Fix the condition - check if brackets were found
|
99 |
if start_idx == -1 or end_idx == -1 or start_idx >= end_idx:
|
100 |
print(f"No valid JSON structure found in output. Start: {start_idx}, End: {end_idx}")
|
101 |
return None
|
102 |
-
|
103 |
# Expand to the full object including outer braces
|
104 |
end_idx += 1 # Include the closing brace
|
105 |
json_str = model_output[start_idx:end_idx]
|
106 |
-
|
107 |
# Handle potential markdown or other formatting
|
108 |
json_str = json_str.strip()
|
109 |
-
|
110 |
# Try to parse JSON directly first
|
111 |
try:
|
112 |
data = json.loads(json_str)
|
@@ -119,7 +116,6 @@ def extract_json_response(model_output: str) -> str:
|
|
119 |
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
|
120 |
# Try parsing again
|
121 |
data = json.loads(json_str)
|
122 |
-
|
123 |
# Extract rewritten prompt from possible key variations
|
124 |
possible_keys = [
|
125 |
"Rewritten", "rewritten", "Rewrited", "rewrited", "Rewrittent",
|
@@ -128,45 +124,36 @@ def extract_json_response(model_output: str) -> str:
|
|
128 |
for key in possible_keys:
|
129 |
if key in data:
|
130 |
return data[key].strip()
|
131 |
-
|
132 |
# Try nested path
|
133 |
if "Response" in data and "Rewritten" in data["Response"]:
|
134 |
return data["Response"]["Rewritten"].strip()
|
135 |
-
|
136 |
# Handle nested JSON objects (additional protection)
|
137 |
if isinstance(data, dict):
|
138 |
for value in data.values():
|
139 |
if isinstance(value, dict) and "Rewritten" in value:
|
140 |
return value["Rewritten"].strip()
|
141 |
-
|
142 |
# Try to find any string value that looks like an instruction
|
143 |
str_values = [v for v in data.values() if isinstance(v, str) and 10 < len(v) < 500]
|
144 |
if str_values:
|
145 |
return str_values[0].strip()
|
146 |
-
|
147 |
except Exception as e:
|
148 |
print(f"JSON parse error: {str(e)}")
|
149 |
print(f"Model output was: {model_output}")
|
150 |
return None
|
151 |
|
152 |
-
|
153 |
def polish_prompt(original_prompt: str) -> str:
|
154 |
"""Enhanced prompt rewriting using original system prompt with JSON handling"""
|
155 |
-
|
156 |
# Format as Qwen chat
|
157 |
messages = [
|
158 |
{"role": "system", "content": SYSTEM_PROMPT_EDIT},
|
159 |
{"role": "user", "content": original_prompt}
|
160 |
]
|
161 |
-
|
162 |
text = rewriter_tokenizer.apply_chat_template(
|
163 |
messages,
|
164 |
tokenize=False,
|
165 |
add_generation_prompt=True
|
166 |
)
|
167 |
-
|
168 |
model_inputs = rewriter_tokenizer(text, return_tensors="pt").to(device)
|
169 |
-
|
170 |
with torch.no_grad():
|
171 |
generated_ids = rewriter_model.generate(
|
172 |
**model_inputs,
|
@@ -178,18 +165,14 @@ def polish_prompt(original_prompt: str) -> str:
|
|
178 |
no_repeat_ngram_size=3,
|
179 |
pad_token_id=rewriter_tokenizer.eos_token_id
|
180 |
)
|
181 |
-
|
182 |
# Extract and clean response
|
183 |
enhanced = rewriter_tokenizer.decode(
|
184 |
generated_ids[0][model_inputs.input_ids.shape[1]:],
|
185 |
skip_special_tokens=True
|
186 |
).strip()
|
187 |
-
|
188 |
print(f"Model raw output: {enhanced}") # Debug logging
|
189 |
-
|
190 |
# Try to extract JSON content
|
191 |
rewritten_prompt = extract_json_response(enhanced)
|
192 |
-
|
193 |
if rewritten_prompt:
|
194 |
# Clean up remaining artifacts
|
195 |
rewritten_prompt = re.sub(r'(Replace|Change|Add) "(.*?)"', r'\1 \2', rewritten_prompt)
|
@@ -205,12 +188,10 @@ def polish_prompt(original_prompt: str) -> str:
|
|
205 |
rewritten_prompt = enhanced
|
206 |
else:
|
207 |
rewritten_prompt = enhanced
|
208 |
-
|
209 |
# Basic cleanup
|
210 |
rewritten_prompt = re.sub(r'\s\s+', ' ', rewritten_prompt).strip()
|
211 |
if ': ' in rewritten_prompt:
|
212 |
rewritten_prompt = rewritten_prompt.split(': ', 1)[-1].strip()
|
213 |
-
|
214 |
return rewritten_prompt[:200] if rewritten_prompt else original_prompt
|
215 |
|
216 |
# Scheduler configuration for Lightning
|
@@ -231,6 +212,7 @@ scheduler_config = {
|
|
231 |
"use_karras_sigmas": False,
|
232 |
}
|
233 |
|
|
|
234 |
# Initialize scheduler with Lightning config
|
235 |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
236 |
|
@@ -254,15 +236,7 @@ if is_xformers_available():
|
|
254 |
else:
|
255 |
print("xformers not available")
|
256 |
|
257 |
-
|
258 |
-
# """Clear enhancement model from memory"""
|
259 |
-
# global rewriter_tokenizer, rewriter_model
|
260 |
-
# if rewriter_model:
|
261 |
-
# del rewriter_tokenizer, rewriter_model
|
262 |
-
# rewriter_tokenizer = None
|
263 |
-
# rewriter_model = None
|
264 |
-
# torch.cuda.empty_cache()
|
265 |
-
# gc.collect()
|
266 |
@spaces.GPU()
|
267 |
def infer(
|
268 |
image,
|
@@ -273,33 +247,28 @@ def infer(
|
|
273 |
num_inference_steps=8,
|
274 |
rewrite_prompt=True,
|
275 |
num_images_per_prompt=1,
|
|
|
276 |
progress=gr.Progress(track_tqdm=True),
|
277 |
):
|
278 |
"""Image editing endpoint with optimized prompt handling"""
|
279 |
-
|
280 |
# Resize image to max 1024px on longest side
|
281 |
def resize_image(pil_image, max_size=1024):
|
282 |
"""Resize image to maximum dimension of 1024px while maintaining aspect ratio"""
|
283 |
try:
|
284 |
if pil_image is None:
|
285 |
return pil_image
|
286 |
-
|
287 |
width, height = pil_image.size
|
288 |
max_dimension = max(width, height)
|
289 |
-
|
290 |
if max_dimension <= max_size:
|
291 |
return pil_image # No resize needed
|
292 |
-
|
293 |
# Calculate new dimensions maintaining aspect ratio
|
294 |
scale = max_size / max_dimension
|
295 |
new_width = int(width * scale)
|
296 |
new_height = int(height * scale)
|
297 |
-
|
298 |
# Resize image
|
299 |
resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
|
300 |
print(f"📝 Image resized from {width}x{height} to {new_width}x{new_height}")
|
301 |
return resized_image
|
302 |
-
|
303 |
except Exception as e:
|
304 |
print(f"⚠️ Image resize failed: {e}")
|
305 |
return pil_image # Return original if resize fails
|
@@ -310,7 +279,6 @@ def infer(
|
|
310 |
try:
|
311 |
if pil_image is None:
|
312 |
return pil_image
|
313 |
-
|
314 |
img_array = np.array(pil_image).astype(np.float32) / 255.0
|
315 |
noise = np.random.normal(0, noise_level, img_array.shape)
|
316 |
noisy_array = img_array + noise
|
@@ -322,96 +290,105 @@ def infer(
|
|
322 |
except Exception as e:
|
323 |
print(f"Warning: Could not add noise to image: {e}")
|
324 |
return pil_image # Return original if noise addition fails
|
325 |
-
|
326 |
# Resize input image first
|
327 |
image = resize_image(image, max_size=1024)
|
328 |
-
|
329 |
original_prompt = prompt
|
330 |
prompt_info = ""
|
331 |
|
332 |
-
# Handle
|
333 |
-
if
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
prompt_info = (
|
347 |
-
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #
|
348 |
-
f"<h4 style='margin-top: 0;'
|
349 |
-
f"<p>
|
350 |
f"</div>"
|
351 |
)
|
352 |
-
|
353 |
-
print(f"Prompt enhancement error: {str(e)}") # Debug logging
|
354 |
-
gr.Warning(f"Prompt enhancement failed: {str(e)}")
|
355 |
prompt_info = (
|
356 |
-
f"<div style='margin:10px; padding:
|
357 |
-
f"<h4 style='margin-top: 0;'
|
358 |
-
f"<p>
|
359 |
f"</div>"
|
360 |
)
|
361 |
-
else:
|
362 |
-
prompt_info = (
|
363 |
-
f"<div style='margin:10px; padding:10px; border-radius:8px; background: #f8f9fa'>"
|
364 |
-
f"<h4 style='margin-top: 0;'>📝 Original Prompt</h4>"
|
365 |
-
f"<p>{original_prompt}</p>"
|
366 |
-
f"</div>"
|
367 |
-
)
|
368 |
|
369 |
# Set base seed for reproducibility
|
370 |
base_seed = seed if not randomize_seed else random.randint(0, MAX_SEED)
|
371 |
|
372 |
try:
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
true_cfg_scale=varied_guidance,
|
395 |
-
num_images_per_prompt=1
|
396 |
-
).images
|
397 |
-
edited_images.extend(result)
|
398 |
-
else:
|
399 |
-
# Single image generation (unchanged)
|
400 |
-
generator = torch.Generator(device=device).manual_seed(base_seed)
|
401 |
-
edited_images = pipe(
|
402 |
-
image=image,
|
403 |
-
prompt=prompt,
|
404 |
negative_prompt=" ",
|
405 |
num_inference_steps=num_inference_steps,
|
406 |
generator=generator,
|
407 |
-
true_cfg_scale=
|
408 |
-
num_images_per_prompt=
|
409 |
).images
|
|
|
|
|
|
|
410 |
|
411 |
# Clear cache after generation
|
412 |
if device == "cuda":
|
413 |
torch.cuda.empty_cache()
|
414 |
gc.collect()
|
|
|
415 |
return edited_images, base_seed, prompt_info
|
416 |
except Exception as e:
|
417 |
# Clear cache on error
|
@@ -425,13 +402,14 @@ def infer(
|
|
425 |
f"<p>{str(e)[:200]}</p>"
|
426 |
f"</div>"
|
427 |
)
|
428 |
-
|
|
|
429 |
with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
|
430 |
gr.Markdown("""
|
431 |
<div style="text-align: center; background: linear-gradient(to right, #3a7bd5, #00d2ff); color: white; padding: 20px; border-radius: 8px;">
|
432 |
<h1 style="margin-bottom: 5px;">⚡️ Qwen-Image-Edit Lightning</h1>
|
433 |
<p>✨ 8-step inferencing with lightx2v's LoRA.</p>
|
434 |
-
<p>📝 Local Prompt Enhancement, Batched Multi-image Generation</p>
|
435 |
</div>
|
436 |
""")
|
437 |
|
@@ -439,65 +417,72 @@ with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
|
|
439 |
# Input Column
|
440 |
with gr.Column(scale=1):
|
441 |
input_image = gr.Image(
|
442 |
-
label="Source Image",
|
443 |
-
type="pil",
|
444 |
height=300
|
445 |
)
|
446 |
prompt = gr.Textbox(
|
447 |
-
label="Edit Instructions",
|
448 |
placeholder="e.g. Replace the background with a beach sunset...",
|
449 |
lines=2,
|
450 |
max_lines=4
|
451 |
)
|
452 |
|
|
|
453 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
rewrite_toggle = gr.Checkbox(
|
455 |
-
label="Enable Prompt Enhancement",
|
456 |
value=True,
|
457 |
interactive=True
|
458 |
)
|
459 |
run_button = gr.Button(
|
460 |
-
"Generate Edits",
|
461 |
-
variant="primary",
|
462 |
min_width=120
|
463 |
)
|
464 |
|
465 |
with gr.Accordion("Advanced Parameters", open=False):
|
466 |
with gr.Row():
|
467 |
seed = gr.Slider(
|
468 |
-
label="Seed",
|
469 |
-
minimum=0,
|
470 |
-
maximum=MAX_SEED,
|
471 |
-
step=1,
|
472 |
value=42
|
473 |
)
|
474 |
randomize_seed = gr.Checkbox(
|
475 |
-
label="Random Seed",
|
476 |
value=True
|
477 |
)
|
478 |
with gr.Row():
|
479 |
true_guidance_scale = gr.Slider(
|
480 |
-
label="Guidance Scale",
|
481 |
-
minimum=1.0,
|
482 |
-
maximum=10.0,
|
483 |
-
step=0.1,
|
484 |
value=4.0
|
485 |
)
|
486 |
num_inference_steps = gr.Slider(
|
487 |
-
label="Inference Steps",
|
488 |
-
minimum=4,
|
489 |
-
maximum=16,
|
490 |
-
step=1,
|
491 |
value=8
|
492 |
)
|
493 |
num_images_per_prompt = gr.Slider(
|
494 |
-
label="Output Count",
|
495 |
-
minimum=1,
|
496 |
-
maximum=4,
|
497 |
-
step=1,
|
498 |
value=2
|
499 |
)
|
500 |
-
|
501 |
# Output Column
|
502 |
with gr.Column(scale=2):
|
503 |
result = gr.Gallery(
|
@@ -512,18 +497,6 @@ with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
|
|
512 |
"Prompt details will appear after generation</div>"
|
513 |
)
|
514 |
|
515 |
-
# # Examples
|
516 |
-
# gr.Examples(
|
517 |
-
# examples=[
|
518 |
-
# "Change the background scene to a rooftop bar at night",
|
519 |
-
# "Transform to pixel art style with 8-bit graphics",
|
520 |
-
# "Replace all text with 'Qwen AI' in futuristic font"
|
521 |
-
# ],
|
522 |
-
# inputs=[prompt],
|
523 |
-
# label="Sample Instructions",
|
524 |
-
# cache_examples=True
|
525 |
-
# )
|
526 |
-
|
527 |
# Set up processing
|
528 |
inputs = [
|
529 |
input_image,
|
@@ -533,9 +506,9 @@ with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
|
|
533 |
true_guidance_scale,
|
534 |
num_inference_steps,
|
535 |
rewrite_toggle,
|
536 |
-
num_images_per_prompt
|
|
|
537 |
]
|
538 |
-
|
539 |
outputs = [result, seed, prompt_info]
|
540 |
|
541 |
run_button.click(
|
@@ -543,11 +516,11 @@ with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
|
|
543 |
inputs=inputs,
|
544 |
outputs=outputs
|
545 |
)
|
546 |
-
|
547 |
prompt.submit(
|
548 |
fn=infer,
|
549 |
inputs=inputs,
|
550 |
outputs=outputs
|
551 |
)
|
552 |
|
|
|
553 |
demo.queue(max_size=5).launch()
|
|
|
6 |
from PIL import Image
|
7 |
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
|
8 |
from diffusers.utils import is_xformers_available
|
9 |
+
from presets import PRESETS, get_preset_choices, get_preset_info
|
10 |
+
|
11 |
import os
|
12 |
import sys
|
13 |
import re
|
|
|
87 |
}
|
88 |
'''
|
89 |
|
|
|
90 |
def extract_json_response(model_output: str) -> str:
|
91 |
"""Extract rewritten instruction from potentially messy JSON output"""
|
92 |
# Remove code block markers first
|
|
|
95 |
# Find the JSON portion in the output
|
96 |
start_idx = model_output.find('{')
|
97 |
end_idx = model_output.rfind('}')
|
|
|
98 |
# Fix the condition - check if brackets were found
|
99 |
if start_idx == -1 or end_idx == -1 or start_idx >= end_idx:
|
100 |
print(f"No valid JSON structure found in output. Start: {start_idx}, End: {end_idx}")
|
101 |
return None
|
|
|
102 |
# Expand to the full object including outer braces
|
103 |
end_idx += 1 # Include the closing brace
|
104 |
json_str = model_output[start_idx:end_idx]
|
|
|
105 |
# Handle potential markdown or other formatting
|
106 |
json_str = json_str.strip()
|
|
|
107 |
# Try to parse JSON directly first
|
108 |
try:
|
109 |
data = json.loads(json_str)
|
|
|
116 |
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
|
117 |
# Try parsing again
|
118 |
data = json.loads(json_str)
|
|
|
119 |
# Extract rewritten prompt from possible key variations
|
120 |
possible_keys = [
|
121 |
"Rewritten", "rewritten", "Rewrited", "rewrited", "Rewrittent",
|
|
|
124 |
for key in possible_keys:
|
125 |
if key in data:
|
126 |
return data[key].strip()
|
|
|
127 |
# Try nested path
|
128 |
if "Response" in data and "Rewritten" in data["Response"]:
|
129 |
return data["Response"]["Rewritten"].strip()
|
|
|
130 |
# Handle nested JSON objects (additional protection)
|
131 |
if isinstance(data, dict):
|
132 |
for value in data.values():
|
133 |
if isinstance(value, dict) and "Rewritten" in value:
|
134 |
return value["Rewritten"].strip()
|
|
|
135 |
# Try to find any string value that looks like an instruction
|
136 |
str_values = [v for v in data.values() if isinstance(v, str) and 10 < len(v) < 500]
|
137 |
if str_values:
|
138 |
return str_values[0].strip()
|
|
|
139 |
except Exception as e:
|
140 |
print(f"JSON parse error: {str(e)}")
|
141 |
print(f"Model output was: {model_output}")
|
142 |
return None
|
143 |
|
|
|
144 |
def polish_prompt(original_prompt: str) -> str:
|
145 |
"""Enhanced prompt rewriting using original system prompt with JSON handling"""
|
|
|
146 |
# Format as Qwen chat
|
147 |
messages = [
|
148 |
{"role": "system", "content": SYSTEM_PROMPT_EDIT},
|
149 |
{"role": "user", "content": original_prompt}
|
150 |
]
|
|
|
151 |
text = rewriter_tokenizer.apply_chat_template(
|
152 |
messages,
|
153 |
tokenize=False,
|
154 |
add_generation_prompt=True
|
155 |
)
|
|
|
156 |
model_inputs = rewriter_tokenizer(text, return_tensors="pt").to(device)
|
|
|
157 |
with torch.no_grad():
|
158 |
generated_ids = rewriter_model.generate(
|
159 |
**model_inputs,
|
|
|
165 |
no_repeat_ngram_size=3,
|
166 |
pad_token_id=rewriter_tokenizer.eos_token_id
|
167 |
)
|
|
|
168 |
# Extract and clean response
|
169 |
enhanced = rewriter_tokenizer.decode(
|
170 |
generated_ids[0][model_inputs.input_ids.shape[1]:],
|
171 |
skip_special_tokens=True
|
172 |
).strip()
|
|
|
173 |
print(f"Model raw output: {enhanced}") # Debug logging
|
|
|
174 |
# Try to extract JSON content
|
175 |
rewritten_prompt = extract_json_response(enhanced)
|
|
|
176 |
if rewritten_prompt:
|
177 |
# Clean up remaining artifacts
|
178 |
rewritten_prompt = re.sub(r'(Replace|Change|Add) "(.*?)"', r'\1 \2', rewritten_prompt)
|
|
|
188 |
rewritten_prompt = enhanced
|
189 |
else:
|
190 |
rewritten_prompt = enhanced
|
|
|
191 |
# Basic cleanup
|
192 |
rewritten_prompt = re.sub(r'\s\s+', ' ', rewritten_prompt).strip()
|
193 |
if ': ' in rewritten_prompt:
|
194 |
rewritten_prompt = rewritten_prompt.split(': ', 1)[-1].strip()
|
|
|
195 |
return rewritten_prompt[:200] if rewritten_prompt else original_prompt
|
196 |
|
197 |
# Scheduler configuration for Lightning
|
|
|
212 |
"use_karras_sigmas": False,
|
213 |
}
|
214 |
|
215 |
+
|
216 |
# Initialize scheduler with Lightning config
|
217 |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
|
218 |
|
|
|
236 |
else:
|
237 |
print("xformers not available")
|
238 |
|
239 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
@spaces.GPU()
|
241 |
def infer(
|
242 |
image,
|
|
|
247 |
num_inference_steps=8,
|
248 |
rewrite_prompt=True,
|
249 |
num_images_per_prompt=1,
|
250 |
+
preset_type=None, # New parameter for presets
|
251 |
progress=gr.Progress(track_tqdm=True),
|
252 |
):
|
253 |
"""Image editing endpoint with optimized prompt handling"""
|
|
|
254 |
# Resize image to max 1024px on longest side
|
255 |
def resize_image(pil_image, max_size=1024):
|
256 |
"""Resize image to maximum dimension of 1024px while maintaining aspect ratio"""
|
257 |
try:
|
258 |
if pil_image is None:
|
259 |
return pil_image
|
|
|
260 |
width, height = pil_image.size
|
261 |
max_dimension = max(width, height)
|
|
|
262 |
if max_dimension <= max_size:
|
263 |
return pil_image # No resize needed
|
|
|
264 |
# Calculate new dimensions maintaining aspect ratio
|
265 |
scale = max_size / max_dimension
|
266 |
new_width = int(width * scale)
|
267 |
new_height = int(height * scale)
|
|
|
268 |
# Resize image
|
269 |
resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
|
270 |
print(f"📝 Image resized from {width}x{height} to {new_width}x{new_height}")
|
271 |
return resized_image
|
|
|
272 |
except Exception as e:
|
273 |
print(f"⚠️ Image resize failed: {e}")
|
274 |
return pil_image # Return original if resize fails
|
|
|
279 |
try:
|
280 |
if pil_image is None:
|
281 |
return pil_image
|
|
|
282 |
img_array = np.array(pil_image).astype(np.float32) / 255.0
|
283 |
noise = np.random.normal(0, noise_level, img_array.shape)
|
284 |
noisy_array = img_array + noise
|
|
|
290 |
except Exception as e:
|
291 |
print(f"Warning: Could not add noise to image: {e}")
|
292 |
return pil_image # Return original if noise addition fails
|
293 |
+
|
294 |
# Resize input image first
|
295 |
image = resize_image(image, max_size=1024)
|
|
|
296 |
original_prompt = prompt
|
297 |
prompt_info = ""
|
298 |
|
299 |
+
# Handle preset batch generation
|
300 |
+
if preset_type and preset_type in PRESETS:
|
301 |
+
preset = PRESETS[preset_type]
|
302 |
+
batch_prompts = [f"{original_prompt}, {preset_prompt}" for preset_prompt in preset["prompts"]]
|
303 |
+
num_images_per_prompt = preset["count"]
|
304 |
+
prompt_info = (
|
305 |
+
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #2196F3; background: #f0f8ff'>"
|
306 |
+
f"<h4 style='margin-top: 0;'>🎨 Preset: {preset_type}</h4>"
|
307 |
+
f"<p>{preset['description']}</p>"
|
308 |
+
f"<p><strong>Base Prompt:</strong> {original_prompt}</p>"
|
309 |
+
f"</div>"
|
310 |
+
)
|
311 |
+
print(f"Using preset: {preset_type} with {len(batch_prompts)} variations")
|
312 |
+
else:
|
313 |
+
batch_prompts = [prompt] # Single prompt in list
|
314 |
+
|
315 |
+
# Handle regular prompt rewriting
|
316 |
+
if rewrite_prompt:
|
317 |
+
try:
|
318 |
+
enhanced_instruction = polish_prompt(original_prompt)
|
319 |
+
if enhanced_instruction and enhanced_instruction != original_prompt:
|
320 |
+
prompt_info = (
|
321 |
+
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #4CAF50; background: #f5f9fe'>"
|
322 |
+
f"<h4 style='margin-top: 0;'>🚀 Prompt Enhancement</h4>"
|
323 |
+
f"<p><strong>Original:</strong> {original_prompt}</p>"
|
324 |
+
f"<p><strong style='color:#2E7D32;'>Enhanced:</strong> {enhanced_instruction}</p>"
|
325 |
+
f"</div>"
|
326 |
+
)
|
327 |
+
batch_prompts = [enhanced_instruction]
|
328 |
+
else:
|
329 |
+
prompt_info = (
|
330 |
+
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF9800; background: #fff8f0'>"
|
331 |
+
f"<h4 style='margin-top: 0;'>📝 Prompt Enhancement</h4>"
|
332 |
+
f"<p>No enhancement applied or enhancement failed</p>"
|
333 |
+
f"</div>"
|
334 |
+
)
|
335 |
+
except Exception as e:
|
336 |
+
print(f"Prompt enhancement error: {str(e)}") # Debug logging
|
337 |
+
gr.Warning(f"Prompt enhancement failed: {str(e)}")
|
338 |
prompt_info = (
|
339 |
+
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF5252; background: #fef5f5'>"
|
340 |
+
f"<h4 style='margin-top: 0;'>⚠️ Enhancement Not Applied</h4>"
|
341 |
+
f"<p>Using original prompt. Error: {str(e)[:100]}</p>"
|
342 |
f"</div>"
|
343 |
)
|
344 |
+
else:
|
|
|
|
|
345 |
prompt_info = (
|
346 |
+
f"<div style='margin:10px; padding:10px; border-radius:8px; background: #f8f9fa'>"
|
347 |
+
f"<h4 style='margin-top: 0;'>📝 Original Prompt</h4>"
|
348 |
+
f"<p>{original_prompt}</p>"
|
349 |
f"</div>"
|
350 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
# Set base seed for reproducibility
|
353 |
base_seed = seed if not randomize_seed else random.randint(0, MAX_SEED)
|
354 |
|
355 |
try:
|
356 |
+
edited_images = []
|
357 |
+
|
358 |
+
# Generate images for each prompt in the batch
|
359 |
+
for i, current_prompt in enumerate(batch_prompts):
|
360 |
+
# Create unique seed for each image
|
361 |
+
generator = torch.Generator(device=device).manual_seed(base_seed + i*1000)
|
362 |
+
|
363 |
+
# Add slight noise to the image for variation (except for first image to maintain base)
|
364 |
+
if i == 0 and len(batch_prompts) == 1:
|
365 |
+
input_image = image
|
366 |
+
else:
|
367 |
+
input_image = add_noise_to_image(image, noise_level=0.01 + i*0.003)
|
368 |
+
|
369 |
+
# Slightly vary guidance scale for each image
|
370 |
+
varied_guidance = true_guidance_scale + random.uniform(-0.2, 0.2)
|
371 |
+
varied_guidance = max(1.0, min(10.0, varied_guidance))
|
372 |
+
|
373 |
+
# Generate single image
|
374 |
+
result = pipe(
|
375 |
+
image=input_image,
|
376 |
+
prompt=current_prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
negative_prompt=" ",
|
378 |
num_inference_steps=num_inference_steps,
|
379 |
generator=generator,
|
380 |
+
true_cfg_scale=varied_guidance,
|
381 |
+
num_images_per_prompt=1
|
382 |
).images
|
383 |
+
edited_images.extend(result)
|
384 |
+
|
385 |
+
print(f"Generated image {i+1}/{len(batch_prompts)} with prompt: {current_prompt[:50]}...")
|
386 |
|
387 |
# Clear cache after generation
|
388 |
if device == "cuda":
|
389 |
torch.cuda.empty_cache()
|
390 |
gc.collect()
|
391 |
+
|
392 |
return edited_images, base_seed, prompt_info
|
393 |
except Exception as e:
|
394 |
# Clear cache on error
|
|
|
402 |
f"<p>{str(e)[:200]}</p>"
|
403 |
f"</div>"
|
404 |
)
|
405 |
+
|
406 |
+
|
407 |
with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
|
408 |
gr.Markdown("""
|
409 |
<div style="text-align: center; background: linear-gradient(to right, #3a7bd5, #00d2ff); color: white; padding: 20px; border-radius: 8px;">
|
410 |
<h1 style="margin-bottom: 5px;">⚡️ Qwen-Image-Edit Lightning</h1>
|
411 |
<p>✨ 8-step inferencing with lightx2v's LoRA.</p>
|
412 |
+
<p>📝 Local Prompt Enhancement, Batched Multi-image Generation, 🎨 Preset Batches</p>
|
413 |
</div>
|
414 |
""")
|
415 |
|
|
|
417 |
# Input Column
|
418 |
with gr.Column(scale=1):
|
419 |
input_image = gr.Image(
|
420 |
+
label="Source Image",
|
421 |
+
type="pil",
|
422 |
height=300
|
423 |
)
|
424 |
prompt = gr.Textbox(
|
425 |
+
label="Edit Instructions",
|
426 |
placeholder="e.g. Replace the background with a beach sunset...",
|
427 |
lines=2,
|
428 |
max_lines=4
|
429 |
)
|
430 |
|
431 |
+
# Add preset dropdown
|
432 |
with gr.Row():
|
433 |
+
preset_dropdown = gr.Dropdown(
|
434 |
+
choices=get_preset_choices(),
|
435 |
+
value=None,
|
436 |
+
label="Preset Batch Generation",
|
437 |
+
interactive=True
|
438 |
+
)
|
439 |
rewrite_toggle = gr.Checkbox(
|
440 |
+
label="Enable Prompt Enhancement",
|
441 |
value=True,
|
442 |
interactive=True
|
443 |
)
|
444 |
run_button = gr.Button(
|
445 |
+
"Generate Edits",
|
446 |
+
variant="primary",
|
447 |
min_width=120
|
448 |
)
|
449 |
|
450 |
with gr.Accordion("Advanced Parameters", open=False):
|
451 |
with gr.Row():
|
452 |
seed = gr.Slider(
|
453 |
+
label="Seed",
|
454 |
+
minimum=0,
|
455 |
+
maximum=MAX_SEED,
|
456 |
+
step=1,
|
457 |
value=42
|
458 |
)
|
459 |
randomize_seed = gr.Checkbox(
|
460 |
+
label="Random Seed",
|
461 |
value=True
|
462 |
)
|
463 |
with gr.Row():
|
464 |
true_guidance_scale = gr.Slider(
|
465 |
+
label="Guidance Scale",
|
466 |
+
minimum=1.0,
|
467 |
+
maximum=10.0,
|
468 |
+
step=0.1,
|
469 |
value=4.0
|
470 |
)
|
471 |
num_inference_steps = gr.Slider(
|
472 |
+
label="Inference Steps",
|
473 |
+
minimum=4,
|
474 |
+
maximum=16,
|
475 |
+
step=1,
|
476 |
value=8
|
477 |
)
|
478 |
num_images_per_prompt = gr.Slider(
|
479 |
+
label="Output Count (Manual)",
|
480 |
+
minimum=1,
|
481 |
+
maximum=4,
|
482 |
+
step=1,
|
483 |
value=2
|
484 |
)
|
485 |
+
|
486 |
# Output Column
|
487 |
with gr.Column(scale=2):
|
488 |
result = gr.Gallery(
|
|
|
497 |
"Prompt details will appear after generation</div>"
|
498 |
)
|
499 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
# Set up processing
|
501 |
inputs = [
|
502 |
input_image,
|
|
|
506 |
true_guidance_scale,
|
507 |
num_inference_steps,
|
508 |
rewrite_toggle,
|
509 |
+
num_images_per_prompt,
|
510 |
+
preset_dropdown # Add preset dropdown to inputs
|
511 |
]
|
|
|
512 |
outputs = [result, seed, prompt_info]
|
513 |
|
514 |
run_button.click(
|
|
|
516 |
inputs=inputs,
|
517 |
outputs=outputs
|
518 |
)
|
|
|
519 |
prompt.submit(
|
520 |
fn=infer,
|
521 |
inputs=inputs,
|
522 |
outputs=outputs
|
523 |
)
|
524 |
|
525 |
+
|
526 |
demo.queue(max_size=5).launch()
|