Spaces:
Runtime error
Runtime error
File size: 10,694 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# Copyright (c) OpenMMLab. All rights reserved.
import random
from abc import abstractmethod
from collections import Counter
from typing import List
import mmengine
import numpy as np
from mmengine.dataset import BaseDataset
from pycocotools.coco import COCO
from mmpretrain.registry import DATASETS
from .coco_vqa import COCOVQA
class FlamingoFewShotMixin:
"""Flamingo fewshot eval dataset minin.
Args:
num_shots (int): Number of shots to perform evaluation.
Defaults to 0.
Note: 0 does not mean a strict zero-shot in Flamingo setting.
It will use 2 only-text prompt without in context images.
num_support_examples (int): Number of support examples to get the
few shots from. Defaults to 2048.
num_query_examples (int): Number of query examples to perform the
final evaluation. Defaults to 5000.
incontext_prompt_temp (str): In context prompt template for few shot
examples. Defaults to ''.
final_prompt_temp (str): Final query prompt template. Defaults to ''.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
num_shots: int = 0,
num_support_examples: int = 2048,
num_query_examples: int = 5000,
incontext_prompt_temp: str = '',
final_prompt_temp: str = '',
**kwarg):
self.num_shots = num_shots
self.num_support_examples = num_support_examples
self.num_query_examples = num_query_examples
self.incontext_prompt_temp = incontext_prompt_temp
self.final_prompt_temp = final_prompt_temp
super().__init__(**kwarg)
def get_subset_idx(self, total_num):
random_idx = np.random.choice(
total_num,
self.num_support_examples + self.num_query_examples,
replace=False)
support_idx = random_idx[:self.num_support_examples]
query_idx = random_idx[self.num_support_examples:]
return support_idx, query_idx
@abstractmethod
def parse_basic_anno(self, anno: dict) -> dict:
"""Parse basic annotation for support and query set."""
pass
@abstractmethod
def parse_fewshot_anno(self, anno: dict, support_list: List) -> dict:
"""Parse fewshot related annotation for query set with support list."""
pass
@DATASETS.register_module()
class FlamingoEvalCOCOVQA(FlamingoFewShotMixin, COCOVQA):
"""Flamingo few shot VQAv2 dataset.
Args:
data_root (str): The root directory for ``data_prefix`` and
``ann_file``.
ann_file (str): Annotation file path.
question_file (str): Question file path.
num_shots (int): Number of shots to perform evaluation.
Defaults to 0.
Note: 0 does not mean a strict zero-shot in Flamingo setting.
It will use 2 only-text prompt without in context images.
num_support_examples (int): Number of support examples to get the
few shots from. Defaults to 2048.
num_query_examples (int): Number of query examples to perform the
final evaluation. Defaults to 5000.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
data_root: str,
question_file: str,
ann_file: str = '',
num_shots: int = 0,
num_support_examples: int = 2048,
num_query_examples: int = 5000,
**kwarg):
super().__init__(
data_root=data_root,
question_file=question_file,
ann_file=ann_file,
num_shots=num_shots,
num_support_examples=num_support_examples,
num_query_examples=num_query_examples,
**kwarg)
def parse_basic_anno(self, ann: dict) -> dict:
"""Parse basic annotation for support and query set.
Args:
anno (dict): Annotation for single example.
Return:
dict: Parsed annotation for single example.
"""
if ann is None:
return {}
answers = [a['answer'] for a in ann['answers']]
count = Counter(answers)
answer_weight = [i / len(answers) for i in count.values()]
answer_info = {
'gt_answer': list(count.keys()),
'gt_answer_weight': answer_weight
}
return answer_info
def parse_fewshot_anno(self, query: dict, support_list: List) -> dict:
"""Parse fewshot related annotation for query set with support list.
Args:
anno (dict): Annotation for single example.
support_list (List): List of support subset to subsample few shots.
Return:
dict: Parsed annotation for single example.
"""
# prepare n shots examples
shots = random.sample(support_list, self.num_shots)
# append image path for n shots
img_path = [shot['img_path'] for shot in shots]
img_path.append(query['img_path'])
query['img_path'] = img_path
query['shots'] = [
dict(
question=item['question'],
answer=item['gt_answer'][0],
) for item in shots
]
return query
def load_data_list(self) -> List[dict]:
"""Load data list."""
questions = mmengine.load(self.question_file)['questions']
if self.ann_file:
annotations = mmengine.load(self.ann_file)['annotations']
assert len(questions) == len(annotations)
else:
annotations = [None] * len(questions)
if self.num_shots > 0:
raise ValueError('Unable to construct few-shot examples '
'since no annotation file.')
# The original VQAv2 annotation file and question file includes
# only image id but no image file paths.
self.image_index = self._create_image_index()
num_data = len(questions)
support_idx, query_idx = self.get_subset_idx(num_data)
# prepare support subset
if self.num_shots > 0:
support_list = []
for idx in support_idx:
question = questions[idx]
ann = annotations[idx]
support = {**question, **self.parse_basic_anno(ann)}
support['img_path'] = self.image_index[question['image_id']]
support_list.append(support)
# prepare query subset
data_list = []
for idx in query_idx:
question = questions[idx]
ann = annotations[idx]
data_info = {**question, **self.parse_basic_anno(ann)}
data_info['img_path'] = self.image_index[question['image_id']]
if self.num_shots > 0:
data_info = self.parse_fewshot_anno(data_info, support_list)
data_list.append(data_info)
return data_list
@DATASETS.register_module()
class FlamingoEvalCOCOCaption(FlamingoFewShotMixin, BaseDataset):
"""Flamingo few shot COCO Caption dataset.
Args:
data_root (str): The root directory for ``data_prefix`` and
``ann_file``.
ann_file (str): Annotation file path.
data_prefix (dict): Prefix for data field. Defaults to
``dict(img_path='')``.
num_shots (int): Number of shots to perform evaluation.
Defaults to 0.
num_support_examples (int): Number of support examples to get the
few shots from. Defaults to 2048.
num_query_examples (int): Number of query examples to perform the
final evaluation. Defaults to 5000.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
data_root: str,
ann_file: str,
num_shots: int = 0,
num_support_examples: int = 2048,
num_query_examples: int = 5000,
**kwarg):
super().__init__(
data_root=data_root,
ann_file=ann_file,
num_shots=num_shots,
num_support_examples=num_support_examples,
num_query_examples=num_query_examples,
**kwarg)
def parse_basic_anno(self, ann: dict, coco: COCO) -> dict:
"""Parse basic annotation for support and query set.
Args:
anno (dict): Annotation for single example.
coco (COCO): The coco dataset.
Return:
dict: Parsed annotation for single example.
"""
img_prefix = self.data_prefix['img_path']
img = coco.imgs[ann['image_id']]
data_info = dict(
img_path=mmengine.join_path(img_prefix, img['file_name']),
gt_caption=ann['caption'],
image_id=ann['image_id'],
)
return data_info
def parse_fewshot_anno(self, query: dict, support_list: List) -> dict:
"""Parse fewshot related annotation for query set with support list.
Args:
query (dict): Annotation for single example.
support_list (List): List of support subset to subsample few shots.
coco (COCO): The coco dataset.
Return:
dict: Parsed annotation for single example.
"""
# prepare n shots examples
shots = random.sample(support_list, self.num_shots)
# append image path for n shots
img_path = [shot['img_path'] for shot in shots]
img_path.append(query['img_path'])
query['img_path'] = img_path
query['shots'] = [dict(caption=item['gt_caption']) for item in shots]
return query
def load_data_list(self) -> List[dict]:
"""Load data list."""
with mmengine.get_local_path(self.ann_file) as ann_file:
coco = COCO(ann_file)
num_data = len(coco.anns)
support_idx, query_idx = self.get_subset_idx(num_data)
ann_ids = list(coco.anns)
# prepare support subset
if self.num_shots > 0:
support_list = []
for idx in support_idx:
support = self.parse_basic_anno(coco.anns[ann_ids[idx]], coco)
support_list.append(support)
# prepare query subset
query_list = []
for idx in query_idx:
data_info = self.parse_basic_anno(coco.anns[ann_ids[idx]], coco)
if self.num_shots > 0:
data_info = self.parse_fewshot_anno(data_info, support_list)
query_list.append(data_info)
return query_list
|