Spaces:
Runtime error
Runtime error
File size: 10,408 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union
from mmengine.fileio import (BaseStorageBackend, get_file_backend,
list_from_file)
from mmengine.logging import MMLogger
from mmpretrain.registry import DATASETS
from .base_dataset import BaseDataset
def find_folders(
root: str,
backend: Optional[BaseStorageBackend] = None
) -> Tuple[List[str], Dict[str, int]]:
"""Find classes by folders under a root.
Args:
root (string): root directory of folders
backend (BaseStorageBackend | None): The file backend of the root.
If None, auto infer backend from the root path. Defaults to None.
Returns:
Tuple[List[str], Dict[str, int]]:
- folders: The name of sub folders under the root.
- folder_to_idx: The map from folder name to class idx.
"""
# Pre-build file backend to prevent verbose file backend inference.
backend = backend or get_file_backend(root, enable_singleton=True)
folders = list(
backend.list_dir_or_file(
root,
list_dir=True,
list_file=False,
recursive=False,
))
folders.sort()
folder_to_idx = {folders[i]: i for i in range(len(folders))}
return folders, folder_to_idx
def get_samples(
root: str,
folder_to_idx: Dict[str, int],
is_valid_file: Callable,
backend: Optional[BaseStorageBackend] = None,
):
"""Make dataset by walking all images under a root.
Args:
root (string): root directory of folders
folder_to_idx (dict): the map from class name to class idx
is_valid_file (Callable): A function that takes path of a file
and check if the file is a valid sample file.
backend (BaseStorageBackend | None): The file backend of the root.
If None, auto infer backend from the root path. Defaults to None.
Returns:
Tuple[list, set]:
- samples: a list of tuple where each element is (image, class_idx)
- empty_folders: The folders don't have any valid files.
"""
samples = []
available_classes = set()
# Pre-build file backend to prevent verbose file backend inference.
backend = backend or get_file_backend(root, enable_singleton=True)
if folder_to_idx is not None:
for folder_name in sorted(list(folder_to_idx.keys())):
_dir = backend.join_path(root, folder_name)
files = backend.list_dir_or_file(
_dir,
list_dir=False,
list_file=True,
recursive=True,
)
for file in sorted(list(files)):
if is_valid_file(file):
path = backend.join_path(folder_name, file)
item = (path, folder_to_idx[folder_name])
samples.append(item)
available_classes.add(folder_name)
empty_folders = set(folder_to_idx.keys()) - available_classes
else:
files = backend.list_dir_or_file(
root,
list_dir=False,
list_file=True,
recursive=True,
)
samples = [file for file in sorted(list(files)) if is_valid_file(file)]
empty_folders = None
return samples, empty_folders
@DATASETS.register_module()
class CustomDataset(BaseDataset):
"""A generic dataset for multiple tasks.
The dataset supports two kinds of style.
1. Use an annotation file to specify all samples, and each line indicates a
sample:
The annotation file (for ``with_label=True``, supervised tasks.): ::
folder_1/xxx.png 0
folder_1/xxy.png 1
123.png 4
nsdf3.png 3
...
The annotation file (for ``with_label=False``, unsupervised tasks.): ::
folder_1/xxx.png
folder_1/xxy.png
123.png
nsdf3.png
...
Sample files: ::
data_prefix/
βββ folder_1
β βββ xxx.png
β βββ xxy.png
β βββ ...
βββ 123.png
βββ nsdf3.png
βββ ...
Please use the argument ``metainfo`` to specify extra information for
the task, like ``{'classes': ('bird', 'cat', 'deer', 'dog', 'frog')}``.
2. Place all samples in one folder as below:
Sample files (for ``with_label=True``, supervised tasks, we use the name
of sub-folders as the categories names): ::
data_prefix/
βββ class_x
β βββ xxx.png
β βββ xxy.png
β βββ ...
β βββ xxz.png
βββ class_y
βββ 123.png
βββ nsdf3.png
βββ ...
βββ asd932_.png
Sample files (for ``with_label=False``, unsupervised tasks, we use all
sample files under the specified folder): ::
data_prefix/
βββ folder_1
β βββ xxx.png
β βββ xxy.png
β βββ ...
βββ 123.png
βββ nsdf3.png
βββ ...
If the ``ann_file`` is specified, the dataset will be generated by the
first way, otherwise, try the second way.
Args:
data_root (str): The root directory for ``data_prefix`` and
``ann_file``. Defaults to ''.
data_prefix (str | dict): Prefix for the data. Defaults to ''.
ann_file (str): Annotation file path. Defaults to ''.
with_label (bool): Whether the annotation file includes ground truth
labels, or use sub-folders to specify categories.
Defaults to True.
extensions (Sequence[str]): A sequence of allowed extensions. Defaults
to ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif').
metainfo (dict, optional): Meta information for dataset, such as class
information. Defaults to None.
lazy_init (bool): Whether to load annotation during instantiation.
In some cases, such as visualization, only the meta information of
the dataset is needed, which is not necessary to load annotation
file. ``Basedataset`` can skip load annotations to save time by set
``lazy_init=False``. Defaults to False.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
data_root: str = '',
data_prefix: Union[str, dict] = '',
ann_file: str = '',
with_label=True,
extensions: Sequence[str] = ('.jpg', '.jpeg', '.png', '.ppm',
'.bmp', '.pgm', '.tif'),
metainfo: Optional[dict] = None,
lazy_init: bool = False,
**kwargs):
assert (ann_file or data_prefix or data_root), \
'One of `ann_file`, `data_root` and `data_prefix` must '\
'be specified.'
self.extensions = tuple(set([i.lower() for i in extensions]))
self.with_label = with_label
super().__init__(
# The base class requires string ann_file but this class doesn't
ann_file=ann_file,
metainfo=metainfo,
data_root=data_root,
data_prefix=data_prefix,
# Force to lazy_init for some modification before loading data.
lazy_init=True,
**kwargs)
# Full initialize the dataset.
if not lazy_init:
self.full_init()
def _find_samples(self):
"""find samples from ``data_prefix``."""
if self.with_label:
classes, folder_to_idx = find_folders(self.img_prefix)
samples, empty_classes = get_samples(
self.img_prefix,
folder_to_idx,
is_valid_file=self.is_valid_file,
)
self.folder_to_idx = folder_to_idx
if self.CLASSES is not None:
assert len(self.CLASSES) == len(classes), \
f"The number of subfolders ({len(classes)}) doesn't " \
f'match the number of specified classes ' \
f'({len(self.CLASSES)}). Please check the data folder.'
else:
self._metainfo['classes'] = tuple(classes)
else:
samples, empty_classes = get_samples(
self.img_prefix,
None,
is_valid_file=self.is_valid_file,
)
if len(samples) == 0:
raise RuntimeError(
f'Found 0 files in subfolders of: {self.data_prefix}. '
f'Supported extensions are: {",".join(self.extensions)}')
if empty_classes:
logger = MMLogger.get_current_instance()
logger.warning(
'Found no valid file in the folder '
f'{", ".join(empty_classes)}. '
f"Supported extensions are: {', '.join(self.extensions)}")
return samples
def load_data_list(self):
"""Load image paths and gt_labels."""
if not self.ann_file:
samples = self._find_samples()
elif self.with_label:
lines = list_from_file(self.ann_file)
samples = [x.strip().rsplit(' ', 1) for x in lines]
else:
samples = list_from_file(self.ann_file)
# Pre-build file backend to prevent verbose file backend inference.
backend = get_file_backend(self.img_prefix, enable_singleton=True)
data_list = []
for sample in samples:
if self.with_label:
filename, gt_label = sample
img_path = backend.join_path(self.img_prefix, filename)
info = {'img_path': img_path, 'gt_label': int(gt_label)}
else:
img_path = backend.join_path(self.img_prefix, sample)
info = {'img_path': img_path}
data_list.append(info)
return data_list
def is_valid_file(self, filename: str) -> bool:
"""Check if a file is a valid sample."""
return filename.lower().endswith(self.extensions)
|