File size: 5,964 Bytes
2ae34e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright (c) OpenMMLab. All rights reserved.
from mmseg.registry import DATASETS
from .basesegdataset import BaseSegDataset


@DATASETS.register_module()
class ADE20KDataset(BaseSegDataset):
    """ADE20K dataset.

    In segmentation map annotation for ADE20K, 0 stands for background, which
    is not included in 150 categories. ``reduce_zero_label`` is fixed to True.
    The ``img_suffix`` is fixed to '.jpg' and ``seg_map_suffix`` is fixed to
    '.png'.
    """
    # METAINFO = dict(
    #     classes=('wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road',
    #              'bed ', 'windowpane', 'grass', 'cabinet', 'sidewalk',
    #              'person', 'earth', 'door', 'table', 'mountain', 'plant',
    #              'curtain', 'chair', 'car', 'water', 'painting', 'sofa',
    #              'shelf', 'house', 'sea', 'mirror', 'rug', 'field', 'armchair',
    #              'seat', 'fence', 'desk', 'rock', 'wardrobe', 'lamp',
    #              'bathtub', 'railing', 'cushion', 'base', 'box', 'column',
    #              'signboard', 'chest of drawers', 'counter', 'sand', 'sink',
    #              'skyscraper', 'fireplace', 'refrigerator', 'grandstand',
    #              'path', 'stairs', 'runway', 'case', 'pool table', 'pillow',
    #              'screen door', 'stairway', 'river', 'bridge', 'bookcase',
    #              'blind', 'coffee table', 'toilet', 'flower', 'book', 'hill',
    #              'bench', 'countertop', 'stove', 'palm', 'kitchen island',
    #              'computer', 'swivel chair', 'boat', 'bar', 'arcade machine',
    #              'hovel', 'bus', 'towel', 'light', 'truck', 'tower',
    #              'chandelier', 'awning', 'streetlight', 'booth',
    #              'television receiver', 'airplane', 'dirt track', 'apparel',
    #              'pole', 'land', 'bannister', 'escalator', 'ottoman', 'bottle',
    #              'buffet', 'poster', 'stage', 'van', 'ship', 'fountain',
    #              'conveyer belt', 'canopy', 'washer', 'plaything',
    #              'swimming pool', 'stool', 'barrel', 'basket', 'waterfall',
    #              'tent', 'bag', 'minibike', 'cradle', 'oven', 'ball', 'food',
    #              'step', 'tank', 'trade name', 'microwave', 'pot', 'animal',
    #              'bicycle', 'lake', 'dishwasher', 'screen', 'blanket',
    #              'sculpture', 'hood', 'sconce', 'vase', 'traffic light',
    #              'tray', 'ashcan', 'fan', 'pier', 'crt screen', 'plate',
    #              'monitor', 'bulletin board', 'shower', 'radiator', 'glass',
    #              'clock', 'flag'),
    #     palette=[[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
    #              [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
    #              [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
    #              [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
    #              [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
    #              [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
    #              [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
    #              [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
    #              [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
    #              [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
    #              [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
    #              [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
    #              [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
    #              [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
    #              [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
    #              [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
    #              [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
    #              [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
    #              [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
    #              [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
    #              [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
    #              [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
    #              [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
    #              [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
    #              [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
    #              [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
    #              [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
    #              [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
    #              [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
    #              [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
    #              [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
    #              [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
    #              [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
    #              [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
    #              [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
    #              [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
    #              [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
    #              [102, 255, 0], [92, 0, 255]])

    METAINFO = dict(classes=('building',), palette=[(0, 0, 255)])

    def __init__(self,
                 img_suffix='.jpg',
                 seg_map_suffix='.png',
                 reduce_zero_label=True,
                 **kwargs) -> None:
        super().__init__(
            img_suffix=img_suffix,
            seg_map_suffix=seg_map_suffix,
            reduce_zero_label=reduce_zero_label,
            **kwargs)