File size: 18,944 Bytes
4d0eb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# Copyright (c) OpenMMLab. All rights reserved.
# Part of code is modified from BEiT
# https://github.com/microsoft/unilm/blob/master/beit/dall_e/encoder.py
import math
from collections import OrderedDict
from functools import partial
from typing import Dict, List, Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.model import BaseModule
from mmengine.model.weight_init import trunc_normal_

from mmpretrain.models.backbones import BEiTViT
from mmpretrain.registry import MODELS
from mmpretrain.structures import DataSample
from ..utils import build_2d_sincos_position_embedding
from .base import BaseSelfSupervisor


class Conv2d(nn.Module):
    """Rewrite Conv2d module according to DALL-E code."""

    def __init__(self,
                 n_in: int,
                 n_out: int,
                 kw: int,
                 use_float16: bool = True,
                 device: torch.device = torch.device('cpu'),
                 requires_grad: bool = False) -> None:
        super().__init__()

        w = torch.empty((n_out, n_in, kw, kw),
                        dtype=torch.float32,
                        device=device,
                        requires_grad=requires_grad)
        w.normal_(std=1 / math.sqrt(n_in * kw**2))

        b = torch.zeros((n_out, ),
                        dtype=torch.float32,
                        device=device,
                        requires_grad=requires_grad)
        self.kw = kw
        self.w, self.b = nn.Parameter(w), nn.Parameter(b)
        self.use_float16 = use_float16

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.use_float16 and 'cuda' in self.w.device.type:
            if x.dtype != torch.float16:
                x = x.half()

            w, b = self.w.half(), self.b.half()
        else:
            if x.dtype != torch.float32:
                x = x.float()

            w, b = self.w, self.b

        return F.conv2d(x, w, b, padding=(self.kw - 1) // 2)


class EncoderBlock(nn.Module):
    """Rewrite EncoderBlock module according to DALL-E code."""

    def __init__(self,
                 n_in: int,
                 n_out: int,
                 n_layers: int,
                 device: torch.device = None,
                 requires_grad: bool = False) -> None:
        super().__init__()
        self.n_hid = n_out // 4
        self.post_gain = 1 / (n_layers**2)

        make_conv = partial(Conv2d, device=device, requires_grad=requires_grad)
        self.id_path = make_conv(n_in, n_out,
                                 1) if n_in != n_out else nn.Identity()
        self.res_path = nn.Sequential(
            OrderedDict([
                ('relu_1', nn.ReLU()),
                ('conv_1', make_conv(n_in, self.n_hid, 3)),
                ('relu_2', nn.ReLU()),
                ('conv_2', make_conv(self.n_hid, self.n_hid, 3)),
                ('relu_3', nn.ReLU()),
                ('conv_3', make_conv(self.n_hid, self.n_hid, 3)),
                ('relu_4', nn.ReLU()),
                ('conv_4', make_conv(self.n_hid, n_out, 1)),
            ]))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.id_path(x) + self.post_gain * self.res_path(x)


@MODELS.register_module(name='DALL-E')
class DALLEEncoder(BaseModule):
    """DALL-E Encoder for feature extraction.

    Args:
        group_count (int): Number of groups in DALL-E encoder. Defaults to 4.
        n_hid (int): Dimension of hidden layers. Defaults to 256.
        n_blk_per_group (int): Number of blocks per group. Defaults to 2.
        input_channels: (int): The channels of input images. Defaults to 3.
        vocab_size (int): Vocabulary size, indicating the number of classes.
            Defaults to 8192.
        device (torch.device): Device of parameters. Defaults to
            ``torch.device('cpu')``.
        requires_grad (bool): Require gradient or not. Defaults to False.
        init_cfg (Union[List[dict], dict], optional): Config dict for weight
            initialization. Defaults to None.
    """

    def __init__(self,
                 group_count: int = 4,
                 n_hid: int = 256,
                 n_blk_per_group: int = 2,
                 input_channels: int = 3,
                 vocab_size: int = 8192,
                 device: torch.device = torch.device('cpu'),
                 requires_grad: bool = False,
                 init_cfg: Union[dict, List[dict], None] = None):
        super().__init__(init_cfg=init_cfg)
        self.input_channels = input_channels

        blk_range = range(n_blk_per_group)
        n_layers = group_count * n_blk_per_group
        make_conv = partial(Conv2d, device=device, requires_grad=requires_grad)
        make_blk = partial(
            EncoderBlock,
            n_layers=n_layers,
            device=device,
            requires_grad=requires_grad)

        self.blocks = nn.Sequential(
            OrderedDict([
                ('input', make_conv(input_channels, 1 * n_hid, 7)),
                ('group_1',
                 nn.Sequential(
                     OrderedDict([
                         *[(f'block_{i + 1}', make_blk(1 * n_hid, 1 * n_hid))
                           for i in blk_range],
                         ('pool', nn.MaxPool2d(kernel_size=2)),
                     ]))),
                ('group_2',
                 nn.Sequential(
                     OrderedDict([
                         *[(f'block_{i + 1}',
                            make_blk(1 * n_hid if i == 0 else 2 * n_hid,
                                     2 * n_hid)) for i in blk_range],
                         ('pool', nn.MaxPool2d(kernel_size=2)),
                     ]))),
                ('group_3',
                 nn.Sequential(
                     OrderedDict([
                         *[(f'block_{i + 1}',
                            make_blk(2 * n_hid if i == 0 else 4 * n_hid,
                                     4 * n_hid)) for i in blk_range],
                         ('pool', nn.MaxPool2d(kernel_size=2)),
                     ]))),
                ('group_4',
                 nn.Sequential(
                     OrderedDict([
                         *[(f'block_{i + 1}',
                            make_blk(4 * n_hid if i == 0 else 8 * n_hid,
                                     8 * n_hid)) for i in blk_range],
                     ]))),
                ('output',
                 nn.Sequential(
                     OrderedDict([
                         ('relu', nn.ReLU()),
                         ('conv',
                          make_conv(
                              8 * n_hid, vocab_size, 1, use_float16=False)),
                     ]))),
            ]))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward function of DALL-E encoder.

        Args:
            x (torch.Tensor): The input images with shape (B, C, H, W).

        Returns:
            torch.Tensor: The output with shape (B, vocab_size, h, w).
        """
        x = x.float()
        if len(x.shape) != 4:
            raise ValueError(f'input shape {x.shape} is not 4d')
        if x.shape[1] != self.input_channels:
            raise ValueError(f'input has {x.shape[1]} channels but model \
                    built for {self.input_channels}')
        if x.dtype != torch.float32:
            raise ValueError('input must have dtype torch.float32')

        return self.blocks(x)


@MODELS.register_module()
class CAEPretrainViT(BEiTViT):
    """Vision Transformer for CAE pre-training and the implementation is based
    on BEiTViT.

    Args:
        arch (str | dict): Vision Transformer architecture. Default: 'b'
        img_size (int | tuple): Input image size
        patch_size (int | tuple): The patch size
        out_indices (Sequence | int): Output from which stages.
            Defaults to -1, means the last stage.
        drop_rate (float): Probability of an element to be zeroed.
            Defaults to 0.
        drop_path_rate (float): stochastic depth rate. Defaults to 0.
        bias (bool | str): The option to add leanable bias for q, k, v. If bias
            is True, it will add leanable bias. If bias is 'qv_bias', it will
            only add leanable bias for q, v. If bias is False, it will not add
            bias for q, k, v. Default to 'qv_bias'.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to ``dict(type='LN')``.
        final_norm (bool): Whether to add a additional layer to normalize
            final feature map. Defaults to True.
        out_type (str): The type of output features. Please choose from

            - ``"cls_token"``: The class token tensor with shape (B, C).
            - ``"featmap"``: The feature map tensor from the patch tokens
              with shape (B, C, H, W).
            - ``"avg_featmap"``: The global averaged feature map tensor
              with shape (B, C).
            - ``"raw"``: The raw feature tensor includes patch tokens and
              class tokens with shape (B, L, C).

            It only works without input mask. Defaults to ``"avg_featmap"``.
        interpolate_mode (str): Select the interpolate mode for position
            embeding vector resize. Defaults to "bicubic".
        layer_scale_init_value (float, optional): The init value of gamma in
            BEiTTransformerEncoderLayer.
        patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
        layer_cfgs (Sequence | dict): Configs of each transformer layer in
            encoder. Defaults to an empty dict.
        init_cfg (dict, optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(
        self,
        arch: str = 'b',
        img_size: int = 224,
        patch_size: int = 16,
        in_channels: int = 3,
        out_indices: int = -1,
        drop_rate: float = 0,
        drop_path_rate: float = 0,
        bias: bool = 'qv_bias',
        norm_cfg: dict = dict(type='LN', eps=1e-6),
        final_norm: bool = True,
        out_type: str = 'raw',
        frozen_stages: int = -1,
        use_abs_pos_emb: bool = True,
        use_rel_pos_bias: bool = False,
        use_shared_rel_pos_bias: bool = False,
        layer_scale_init_value: float = None,
        interpolate_mode: str = 'bicubic',
        patch_cfg: dict = dict(),
        layer_cfgs: dict = dict(),
        init_cfg: dict = [
            dict(type='Constant', val=1, layer=['LayerNorm']),
            dict(type='TruncNormal', std=0.02, layer=['Conv2d']),
            dict(type='Xavier', distribution='uniform', layer=['Linear'])
        ]
    ) -> None:
        super().__init__(
            arch=arch,
            img_size=img_size,
            patch_size=patch_size,
            in_channels=in_channels,
            out_indices=out_indices,
            drop_rate=drop_rate,
            drop_path_rate=drop_path_rate,
            bias=bias,
            norm_cfg=norm_cfg,
            final_norm=final_norm,
            out_type=out_type,
            with_cls_token=True,
            frozen_stages=frozen_stages,
            use_abs_pos_emb=use_abs_pos_emb,
            use_rel_pos_bias=use_rel_pos_bias,
            use_shared_rel_pos_bias=use_shared_rel_pos_bias,
            layer_scale_init_value=layer_scale_init_value,
            interpolate_mode=interpolate_mode,
            patch_cfg=patch_cfg,
            layer_cfgs=layer_cfgs,
            init_cfg=init_cfg)
        self.pos_embed.requires_grad = False
        self.num_patches = self.patch_resolution[0] * self.patch_resolution[1]

    def init_weights(self) -> None:
        """Initialize position embedding, patch embedding and cls token."""
        super().init_weights()
        if not (isinstance(self.init_cfg, dict)
                and self.init_cfg['type'] == 'Pretrained'):
            # initialize position  embedding in backbone
            pos_embed = build_2d_sincos_position_embedding(
                int(self.num_patches**.5),
                self.pos_embed.shape[-1],
                cls_token=True)
            self.pos_embed.data.copy_(pos_embed.float())

            trunc_normal_(self.cls_token, std=.02)

    def forward(self, x: torch.Tensor,
                mask: Optional[torch.Tensor]) -> torch.Tensor:
        """Generate features for masked images.

        This function generates mask images and get the hidden features for
        visible patches.

        The function supports two kind of forward behaviors. If the ``mask`` is
        not ``None``, the forward function will be executed as masked image
        modeling pre-training; if the ``mask`` is ``None``, the forward
        function will call ``super().forward()``, which extract features from
        images without mask.

        Args:
            x (torch.Tensor): Input images, which is of shape B x C x H x W.
            mask (torch.Tensor, optional): Mask for input, which is of shape
                B x L.

        Returns:
            torch.Tensor: hidden features.
        """
        if mask is None:
            return super().forward(x)

        else:
            x, _ = self.patch_embed(x)
            batch_size, _, dim = x.size()

            cls_tokens = self.cls_token.expand(batch_size, -1, -1)

            # NOTE: unmasked embeddings
            x_unmasked = x[~mask].reshape(batch_size, -1, dim)
            x_unmasked = torch.cat((cls_tokens, x_unmasked), dim=1)

            pos_embed = self.pos_embed.expand(batch_size, self.num_patches + 1,
                                              dim)
            pos_embed_unmasked = pos_embed[:, 1:][~mask].reshape(
                batch_size, -1, dim)
            pos_embed_unmasked = torch.cat(
                (pos_embed[:, :1], pos_embed_unmasked), dim=1)
            x_unmasked = x_unmasked + pos_embed_unmasked

            x_unmasked = self.drop_after_pos(x_unmasked)

            for i, layer in enumerate(self.layers):
                x_unmasked = layer(x=x_unmasked, rel_pos_bias=None)

                if i == len(self.layers) - 1 and self.final_norm:
                    x_unmasked = self.norm1(x_unmasked)

            return x_unmasked


@MODELS.register_module()
class CAE(BaseSelfSupervisor):
    """CAE.

    Implementation of `Context Autoencoder for Self-Supervised Representation
    Learning <https://arxiv.org/abs/2202.03026>`_.

    Args:
        backbone (dict): Config dict for module of backbone.
        neck (dict): Config dict for module of neck.
        head (dict): Config dict for module of head functions.
        target_generator: (dict, optional): The target_generator module to
            generate targets for self-supervised learning optimization, such as
            HOG, extracted features from other modules(DALL-E, CLIP), etc.
        base_momentum (float): The base momentum coefficient for the target
            network. Defaults to 0.0.
        data_preprocessor (dict, optional): The config for preprocessing
            input data. If None or no specified type, it will use
            "SelfSupDataPreprocessor" as type.
            See :class:`SelfSupDataPreprocessor` for more details.
            Defaults to None.
        init_cfg (Union[List[dict], dict], optional): Config dict for weight
            initialization. Defaults to None.
    """

    def __init__(self,
                 backbone: dict,
                 neck: dict,
                 head: dict,
                 target_generator: Optional[dict] = None,
                 base_momentum: float = 0.0,
                 data_preprocessor: Optional[dict] = None,
                 init_cfg: Optional[Union[List[dict], dict]] = None) -> None:
        super().__init__(
            backbone=backbone,
            neck=neck,
            head=head,
            target_generator=target_generator,
            data_preprocessor=data_preprocessor,
            init_cfg=init_cfg)

        self.momentum = base_momentum
        self.teacher = MODELS.build(backbone)

    def init_weights(self) -> None:
        """Initialize weights."""
        super().init_weights()

        # init the weights of teacher with those of backbone
        for param_backbone, param_teacher in zip(self.backbone.parameters(),
                                                 self.teacher.parameters()):
            param_teacher.detach()
            param_teacher.data.copy_(param_backbone.data)
            param_teacher.requires_grad = False

    def momentum_update(self) -> None:
        """Momentum update of the teacher network."""
        for param_bacbone, param_teacher in zip(self.backbone.parameters(),
                                                self.teacher.parameters()):
            param_teacher.data = param_teacher.data * self.momentum + \
                param_bacbone.data * (1. - self.momentum)

    def extract_feat(self, inputs: torch.Tensor):
        return self.backbone(inputs, mask=None)

    def loss(self, inputs: List[torch.Tensor], data_samples: List[DataSample],
             **kwargs) -> Dict[str, torch.Tensor]:
        """The forward function in training.

        Args:
            inputs (List[torch.Tensor]): The input images.
            data_samples (List[DataSample]): All elements required
                during the forward function.

        Returns:
            Dict[str, torch.Tensor]: A dictionary of loss components.
        """
        mask = torch.stack([data_sample.mask for data_sample in data_samples])
        mask = mask.flatten(1).to(torch.bool)

        unmasked = self.backbone(inputs[0], mask)

        # get the latent prediction for the masked patches
        with torch.no_grad():
            # inputs[0] is the prediction image
            latent_target = self.teacher(inputs[0], ~mask)
            latent_target = latent_target[:, 1:, :]
            self.momentum_update()

        pos_embed = self.backbone.pos_embed.expand(inputs[0].shape[0], -1, -1)
        pos_embed_masked = pos_embed[:,
                                     1:][mask].reshape(inputs[0].shape[0], -1,
                                                       pos_embed.shape[-1])
        pos_embed_unmasked = pos_embed[:, 1:][~mask].reshape(
            inputs[0].shape[0], -1, pos_embed.shape[-1])

        # input the unmasked tokens and masked tokens to the decoder
        logits, latent_pred = self.neck(unmasked[:, 1:], pos_embed_masked,
                                        pos_embed_unmasked)

        logits = logits.view(-1, logits.shape[-1])
        # inputs[1] is the target image
        logits_target = self.target_generator(inputs[1])
        loss_main, loss_align = self.head.loss(logits, logits_target,
                                               latent_pred, latent_target,
                                               mask)
        losses = dict()

        losses['loss'] = loss_main + loss_align
        losses['main'] = loss_main
        losses['align'] = loss_align
        return losses