Spaces:
Runtime error
Runtime error
File size: 10,435 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# Copyright (c) OpenMMLab. All rights reserved.
# Partly adopted from https://github.com/GT-Vision-Lab/VQA
# Copyright (c) 2014, Aishwarya Agrawal
from typing import List, Optional
import mmengine
from mmengine.evaluator import BaseMetric
from mmengine.logging import MMLogger
from mmpretrain.registry import METRICS
def _process_punctuation(inText):
import re
outText = inText
punct = [
';', r'/', '[', ']', '"', '{', '}', '(', ')', '=', '+', '\\', '_', '-',
'>', '<', '@', '`', ',', '?', '!'
]
commaStrip = re.compile('(\d)(,)(\d)') # noqa: W605
periodStrip = re.compile('(?!<=\d)(\.)(?!\d)') # noqa: W605
for p in punct:
if (p + ' ' in inText or ' ' + p in inText) or (re.search(
commaStrip, inText) is not None):
outText = outText.replace(p, '')
else:
outText = outText.replace(p, ' ')
outText = periodStrip.sub('', outText, re.UNICODE)
return outText
def _process_digit_article(inText):
outText = []
tempText = inText.lower().split()
articles = ['a', 'an', 'the']
manualMap = {
'none': '0',
'zero': '0',
'one': '1',
'two': '2',
'three': '3',
'four': '4',
'five': '5',
'six': '6',
'seven': '7',
'eight': '8',
'nine': '9',
'ten': '10',
}
contractions = {
'aint': "ain't",
'arent': "aren't",
'cant': "can't",
'couldve': "could've",
'couldnt': "couldn't",
"couldn'tve": "couldn't've",
"couldnt've": "couldn't've",
'didnt': "didn't",
'doesnt': "doesn't",
'dont': "don't",
'hadnt': "hadn't",
"hadnt've": "hadn't've",
"hadn'tve": "hadn't've",
'hasnt': "hasn't",
'havent': "haven't",
'hed': "he'd",
"hed've": "he'd've",
"he'dve": "he'd've",
'hes': "he's",
'howd': "how'd",
'howll': "how'll",
'hows': "how's",
"Id've": "I'd've",
"I'dve": "I'd've",
'Im': "I'm",
'Ive': "I've",
'isnt': "isn't",
'itd': "it'd",
"itd've": "it'd've",
"it'dve": "it'd've",
'itll': "it'll",
"let's": "let's",
'maam': "ma'am",
'mightnt': "mightn't",
"mightnt've": "mightn't've",
"mightn'tve": "mightn't've",
'mightve': "might've",
'mustnt': "mustn't",
'mustve': "must've",
'neednt': "needn't",
'notve': "not've",
'oclock': "o'clock",
'oughtnt': "oughtn't",
"ow's'at": "'ow's'at",
"'ows'at": "'ow's'at",
"'ow'sat": "'ow's'at",
'shant': "shan't",
"shed've": "she'd've",
"she'dve": "she'd've",
"she's": "she's",
'shouldve': "should've",
'shouldnt': "shouldn't",
"shouldnt've": "shouldn't've",
"shouldn'tve": "shouldn't've",
"somebody'd": 'somebodyd',
"somebodyd've": "somebody'd've",
"somebody'dve": "somebody'd've",
'somebodyll': "somebody'll",
'somebodys': "somebody's",
'someoned': "someone'd",
"someoned've": "someone'd've",
"someone'dve": "someone'd've",
'someonell': "someone'll",
'someones': "someone's",
'somethingd': "something'd",
"somethingd've": "something'd've",
"something'dve": "something'd've",
'somethingll': "something'll",
'thats': "that's",
'thered': "there'd",
"thered've": "there'd've",
"there'dve": "there'd've",
'therere': "there're",
'theres': "there's",
'theyd': "they'd",
"theyd've": "they'd've",
"they'dve": "they'd've",
'theyll': "they'll",
'theyre': "they're",
'theyve': "they've",
'twas': "'twas",
'wasnt': "wasn't",
"wed've": "we'd've",
"we'dve": "we'd've",
'weve': "we've",
'werent': "weren't",
'whatll': "what'll",
'whatre': "what're",
'whats': "what's",
'whatve': "what've",
'whens': "when's",
'whered': "where'd",
'wheres': "where's",
'whereve': "where've",
'whod': "who'd",
"whod've": "who'd've",
"who'dve": "who'd've",
'wholl': "who'll",
'whos': "who's",
'whove': "who've",
'whyll': "why'll",
'whyre': "why're",
'whys': "why's",
'wont': "won't",
'wouldve': "would've",
'wouldnt': "wouldn't",
"wouldnt've": "wouldn't've",
"wouldn'tve": "wouldn't've",
'yall': "y'all",
"yall'll": "y'all'll",
"y'allll": "y'all'll",
"yall'd've": "y'all'd've",
"y'alld've": "y'all'd've",
"y'all'dve": "y'all'd've",
'youd': "you'd",
"youd've": "you'd've",
"you'dve": "you'd've",
'youll': "you'll",
'youre': "you're",
'youve': "you've",
}
for word in tempText:
word = manualMap.setdefault(word, word)
if word not in articles:
outText.append(word)
for wordId, word in enumerate(outText):
if word in contractions:
outText[wordId] = contractions[word]
outText = ' '.join(outText)
return outText
@METRICS.register_module()
class VQAAcc(BaseMetric):
'''VQA Acc metric.
Args:
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Should be modified according to the
`retrieval_type` for unambiguous results. Defaults to TR.
'''
default_prefix = 'VQA'
def __init__(self,
full_score_weight: float = 0.3,
collect_device: str = 'cpu',
prefix: Optional[str] = None):
super().__init__(collect_device=collect_device, prefix=prefix)
self.full_score_weight = full_score_weight
def process(self, data_batch, data_samples):
"""Process one batch of data samples.
The processed results should be stored in ``self.results``, which will
be used to computed the metrics when all batches have been processed.
Args:
data_batch: A batch of data from the dataloader.
data_samples (Sequence[dict]): A batch of outputs from the model.
"""
for sample in data_samples:
gt_answer = sample.get('gt_answer')
gt_answer_weight = sample.get('gt_answer_weight')
if isinstance(gt_answer, str):
gt_answer = [gt_answer]
if gt_answer_weight is None:
gt_answer_weight = [1. / (len(gt_answer))] * len(gt_answer)
result = {
'pred_answer': sample.get('pred_answer'),
'gt_answer': gt_answer,
'gt_answer_weight': gt_answer_weight,
}
self.results.append(result)
def compute_metrics(self, results: List):
"""Compute the metrics from processed results.
Args:
results (dict): The processed results of each batch.
Returns:
Dict: The computed metrics. The keys are the names of the metrics,
and the values are corresponding results.
"""
acc = []
for result in results:
pred_answer = self._process_answer(result['pred_answer'])
gt_answer = [
self._process_answer(answer) for answer in result['gt_answer']
]
answer_weight = result['gt_answer_weight']
weight_sum = 0
for i, gt in enumerate(gt_answer):
if gt == pred_answer:
weight_sum += answer_weight[i]
vqa_acc = min(1.0, weight_sum / self.full_score_weight)
acc.append(vqa_acc)
accuracy = sum(acc) / len(acc) * 100
metrics = {'acc': accuracy}
return metrics
def _process_answer(self, answer):
answer = answer.replace('\n', ' ')
answer = answer.replace('\t', ' ')
answer = answer.strip()
answer = _process_punctuation(answer)
answer = _process_digit_article(answer)
return answer
@METRICS.register_module()
class ReportVQA(BaseMetric):
"""Dump VQA result to the standard json format for VQA evaluation.
Args:
file_path (str): The file path to save the result file.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be 'cpu' or
'gpu'. Defaults to 'cpu'.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, self.default_prefix
will be used instead. Should be modified according to the
`retrieval_type` for unambiguous results. Defaults to TR.
"""
default_prefix = 'VQA'
def __init__(self,
file_path: str,
collect_device: str = 'cpu',
prefix: Optional[str] = None):
super().__init__(collect_device=collect_device, prefix=prefix)
if not file_path.endswith('.json'):
raise ValueError('The output file must be a json file.')
self.file_path = file_path
def process(self, data_batch, data_samples) -> None:
"""transfer tensors in predictions to CPU."""
for sample in data_samples:
question_id = sample['question_id']
pred_answer = sample['pred_answer']
result = {
'question_id': int(question_id),
'answer': pred_answer,
}
self.results.append(result)
def compute_metrics(self, results: List):
"""Dump the result to json file."""
mmengine.dump(results, self.file_path)
logger = MMLogger.get_current_instance()
logger.info(f'Results has been saved to {self.file_path}.')
return {}
|