File size: 10,435 Bytes
4d0eb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright (c) OpenMMLab. All rights reserved.
# Partly adopted from https://github.com/GT-Vision-Lab/VQA
# Copyright (c) 2014, Aishwarya Agrawal
from typing import List, Optional

import mmengine
from mmengine.evaluator import BaseMetric
from mmengine.logging import MMLogger

from mmpretrain.registry import METRICS


def _process_punctuation(inText):
    import re
    outText = inText
    punct = [
        ';', r'/', '[', ']', '"', '{', '}', '(', ')', '=', '+', '\\', '_', '-',
        '>', '<', '@', '`', ',', '?', '!'
    ]
    commaStrip = re.compile('(\d)(,)(\d)')  # noqa: W605
    periodStrip = re.compile('(?!<=\d)(\.)(?!\d)')  # noqa: W605
    for p in punct:
        if (p + ' ' in inText or ' ' + p in inText) or (re.search(
                commaStrip, inText) is not None):
            outText = outText.replace(p, '')
        else:
            outText = outText.replace(p, ' ')
    outText = periodStrip.sub('', outText, re.UNICODE)
    return outText


def _process_digit_article(inText):
    outText = []
    tempText = inText.lower().split()
    articles = ['a', 'an', 'the']
    manualMap = {
        'none': '0',
        'zero': '0',
        'one': '1',
        'two': '2',
        'three': '3',
        'four': '4',
        'five': '5',
        'six': '6',
        'seven': '7',
        'eight': '8',
        'nine': '9',
        'ten': '10',
    }
    contractions = {
        'aint': "ain't",
        'arent': "aren't",
        'cant': "can't",
        'couldve': "could've",
        'couldnt': "couldn't",
        "couldn'tve": "couldn't've",
        "couldnt've": "couldn't've",
        'didnt': "didn't",
        'doesnt': "doesn't",
        'dont': "don't",
        'hadnt': "hadn't",
        "hadnt've": "hadn't've",
        "hadn'tve": "hadn't've",
        'hasnt': "hasn't",
        'havent': "haven't",
        'hed': "he'd",
        "hed've": "he'd've",
        "he'dve": "he'd've",
        'hes': "he's",
        'howd': "how'd",
        'howll': "how'll",
        'hows': "how's",
        "Id've": "I'd've",
        "I'dve": "I'd've",
        'Im': "I'm",
        'Ive': "I've",
        'isnt': "isn't",
        'itd': "it'd",
        "itd've": "it'd've",
        "it'dve": "it'd've",
        'itll': "it'll",
        "let's": "let's",
        'maam': "ma'am",
        'mightnt': "mightn't",
        "mightnt've": "mightn't've",
        "mightn'tve": "mightn't've",
        'mightve': "might've",
        'mustnt': "mustn't",
        'mustve': "must've",
        'neednt': "needn't",
        'notve': "not've",
        'oclock': "o'clock",
        'oughtnt': "oughtn't",
        "ow's'at": "'ow's'at",
        "'ows'at": "'ow's'at",
        "'ow'sat": "'ow's'at",
        'shant': "shan't",
        "shed've": "she'd've",
        "she'dve": "she'd've",
        "she's": "she's",
        'shouldve': "should've",
        'shouldnt': "shouldn't",
        "shouldnt've": "shouldn't've",
        "shouldn'tve": "shouldn't've",
        "somebody'd": 'somebodyd',
        "somebodyd've": "somebody'd've",
        "somebody'dve": "somebody'd've",
        'somebodyll': "somebody'll",
        'somebodys': "somebody's",
        'someoned': "someone'd",
        "someoned've": "someone'd've",
        "someone'dve": "someone'd've",
        'someonell': "someone'll",
        'someones': "someone's",
        'somethingd': "something'd",
        "somethingd've": "something'd've",
        "something'dve": "something'd've",
        'somethingll': "something'll",
        'thats': "that's",
        'thered': "there'd",
        "thered've": "there'd've",
        "there'dve": "there'd've",
        'therere': "there're",
        'theres': "there's",
        'theyd': "they'd",
        "theyd've": "they'd've",
        "they'dve": "they'd've",
        'theyll': "they'll",
        'theyre': "they're",
        'theyve': "they've",
        'twas': "'twas",
        'wasnt': "wasn't",
        "wed've": "we'd've",
        "we'dve": "we'd've",
        'weve': "we've",
        'werent': "weren't",
        'whatll': "what'll",
        'whatre': "what're",
        'whats': "what's",
        'whatve': "what've",
        'whens': "when's",
        'whered': "where'd",
        'wheres': "where's",
        'whereve': "where've",
        'whod': "who'd",
        "whod've": "who'd've",
        "who'dve": "who'd've",
        'wholl': "who'll",
        'whos': "who's",
        'whove': "who've",
        'whyll': "why'll",
        'whyre': "why're",
        'whys': "why's",
        'wont': "won't",
        'wouldve': "would've",
        'wouldnt': "wouldn't",
        "wouldnt've": "wouldn't've",
        "wouldn'tve": "wouldn't've",
        'yall': "y'all",
        "yall'll": "y'all'll",
        "y'allll": "y'all'll",
        "yall'd've": "y'all'd've",
        "y'alld've": "y'all'd've",
        "y'all'dve": "y'all'd've",
        'youd': "you'd",
        "youd've": "you'd've",
        "you'dve": "you'd've",
        'youll': "you'll",
        'youre': "you're",
        'youve': "you've",
    }
    for word in tempText:
        word = manualMap.setdefault(word, word)
        if word not in articles:
            outText.append(word)
    for wordId, word in enumerate(outText):
        if word in contractions:
            outText[wordId] = contractions[word]
    outText = ' '.join(outText)
    return outText


@METRICS.register_module()
class VQAAcc(BaseMetric):
    '''VQA Acc metric.
    Args:

        collect_device (str): Device name used for collecting results from
            different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Should be modified according to the
            `retrieval_type` for unambiguous results. Defaults to TR.
    '''
    default_prefix = 'VQA'

    def __init__(self,
                 full_score_weight: float = 0.3,
                 collect_device: str = 'cpu',
                 prefix: Optional[str] = None):
        super().__init__(collect_device=collect_device, prefix=prefix)
        self.full_score_weight = full_score_weight

    def process(self, data_batch, data_samples):
        """Process one batch of data samples.

        The processed results should be stored in ``self.results``, which will
        be used to computed the metrics when all batches have been processed.

        Args:
            data_batch: A batch of data from the dataloader.
            data_samples (Sequence[dict]): A batch of outputs from the model.
        """
        for sample in data_samples:
            gt_answer = sample.get('gt_answer')
            gt_answer_weight = sample.get('gt_answer_weight')
            if isinstance(gt_answer, str):
                gt_answer = [gt_answer]
            if gt_answer_weight is None:
                gt_answer_weight = [1. / (len(gt_answer))] * len(gt_answer)

            result = {
                'pred_answer': sample.get('pred_answer'),
                'gt_answer': gt_answer,
                'gt_answer_weight': gt_answer_weight,
            }

            self.results.append(result)

    def compute_metrics(self, results: List):
        """Compute the metrics from processed results.

        Args:
            results (dict): The processed results of each batch.

        Returns:
            Dict: The computed metrics. The keys are the names of the metrics,
            and the values are corresponding results.
        """
        acc = []
        for result in results:
            pred_answer = self._process_answer(result['pred_answer'])
            gt_answer = [
                self._process_answer(answer) for answer in result['gt_answer']
            ]
            answer_weight = result['gt_answer_weight']

            weight_sum = 0
            for i, gt in enumerate(gt_answer):
                if gt == pred_answer:
                    weight_sum += answer_weight[i]
            vqa_acc = min(1.0, weight_sum / self.full_score_weight)
            acc.append(vqa_acc)

        accuracy = sum(acc) / len(acc) * 100

        metrics = {'acc': accuracy}
        return metrics

    def _process_answer(self, answer):
        answer = answer.replace('\n', ' ')
        answer = answer.replace('\t', ' ')
        answer = answer.strip()
        answer = _process_punctuation(answer)
        answer = _process_digit_article(answer)
        return answer


@METRICS.register_module()
class ReportVQA(BaseMetric):
    """Dump VQA result to the standard json format for VQA evaluation.

    Args:
        file_path (str): The file path to save the result file.
        collect_device (str): Device name used for collecting results from
            different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Should be modified according to the
            `retrieval_type` for unambiguous results. Defaults to TR.
    """
    default_prefix = 'VQA'

    def __init__(self,
                 file_path: str,
                 collect_device: str = 'cpu',
                 prefix: Optional[str] = None):
        super().__init__(collect_device=collect_device, prefix=prefix)
        if not file_path.endswith('.json'):
            raise ValueError('The output file must be a json file.')
        self.file_path = file_path

    def process(self, data_batch, data_samples) -> None:
        """transfer tensors in predictions to CPU."""
        for sample in data_samples:
            question_id = sample['question_id']
            pred_answer = sample['pred_answer']

            result = {
                'question_id': int(question_id),
                'answer': pred_answer,
            }

            self.results.append(result)

    def compute_metrics(self, results: List):
        """Dump the result to json file."""
        mmengine.dump(results, self.file_path)
        logger = MMLogger.get_current_instance()
        logger.info(f'Results has been saved to {self.file_path}.')
        return {}