File size: 4,971 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional

import torch
import torch.nn as nn
from torch import Tensor

from mmdet.registry import MODELS
from .utils import weighted_loss


@weighted_loss
def smooth_l1_loss(pred: Tensor, target: Tensor, beta: float = 1.0) -> Tensor:
    """Smooth L1 loss.

    Args:
        pred (Tensor): The prediction.
        target (Tensor): The learning target of the prediction.
        beta (float, optional): The threshold in the piecewise function.
            Defaults to 1.0.

    Returns:
        Tensor: Calculated loss
    """
    assert beta > 0
    if target.numel() == 0:
        return pred.sum() * 0

    assert pred.size() == target.size()
    diff = torch.abs(pred - target)
    loss = torch.where(diff < beta, 0.5 * diff * diff / beta,
                       diff - 0.5 * beta)
    return loss


@weighted_loss
def l1_loss(pred: Tensor, target: Tensor) -> Tensor:
    """L1 loss.

    Args:
        pred (Tensor): The prediction.
        target (Tensor): The learning target of the prediction.

    Returns:
        Tensor: Calculated loss
    """
    if target.numel() == 0:
        return pred.sum() * 0

    assert pred.size() == target.size()
    loss = torch.abs(pred - target)
    return loss


@MODELS.register_module()
class SmoothL1Loss(nn.Module):
    """Smooth L1 loss.

    Args:
        beta (float, optional): The threshold in the piecewise function.
            Defaults to 1.0.
        reduction (str, optional): The method to reduce the loss.
            Options are "none", "mean" and "sum". Defaults to "mean".
        loss_weight (float, optional): The weight of loss.
    """

    def __init__(self,
                 beta: float = 1.0,
                 reduction: str = 'mean',
                 loss_weight: float = 1.0) -> None:
        super().__init__()
        self.beta = beta
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred: Tensor,
                target: Tensor,
                weight: Optional[Tensor] = None,
                avg_factor: Optional[int] = None,
                reduction_override: Optional[str] = None,
                **kwargs) -> Tensor:
        """Forward function.

        Args:
            pred (Tensor): The prediction.
            target (Tensor): The learning target of the prediction.
            weight (Tensor, optional): The weight of loss for each
                prediction. Defaults to None.
            avg_factor (int, optional): Average factor that is used to average
                the loss. Defaults to None.
            reduction_override (str, optional): The reduction method used to
                override the original reduction method of the loss.
                Defaults to None.

        Returns:
            Tensor: Calculated loss
        """
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss_bbox = self.loss_weight * smooth_l1_loss(
            pred,
            target,
            weight,
            beta=self.beta,
            reduction=reduction,
            avg_factor=avg_factor,
            **kwargs)
        return loss_bbox


@MODELS.register_module()
class L1Loss(nn.Module):
    """L1 loss.

    Args:
        reduction (str, optional): The method to reduce the loss.
            Options are "none", "mean" and "sum".
        loss_weight (float, optional): The weight of loss.
    """

    def __init__(self,
                 reduction: str = 'mean',
                 loss_weight: float = 1.0) -> None:
        super().__init__()
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred: Tensor,
                target: Tensor,
                weight: Optional[Tensor] = None,
                avg_factor: Optional[int] = None,
                reduction_override: Optional[str] = None) -> Tensor:
        """Forward function.

        Args:
            pred (Tensor): The prediction.
            target (Tensor): The learning target of the prediction.
            weight (Tensor, optional): The weight of loss for each
                prediction. Defaults to None.
            avg_factor (int, optional): Average factor that is used to average
                the loss. Defaults to None.
            reduction_override (str, optional): The reduction method used to
                override the original reduction method of the loss.
                Defaults to None.

        Returns:
            Tensor: Calculated loss
        """
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss_bbox = self.loss_weight * l1_loss(
            pred, target, weight, reduction=reduction, avg_factor=avg_factor)
        return loss_bbox