Spaces:
Runtime error
Runtime error
File size: 15,517 Bytes
3e06e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptInstanceList
from ..losses import smooth_l1_loss
from ..task_modules.samplers import PseudoSampler
from ..utils import multi_apply
from .anchor_head import AnchorHead
# TODO: add loss evaluator for SSD
@MODELS.register_module()
class SSDHead(AnchorHead):
"""Implementation of `SSD head <https://arxiv.org/abs/1512.02325>`_
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (Sequence[int]): Number of channels in the input feature
map.
stacked_convs (int): Number of conv layers in cls and reg tower.
Defaults to 0.
feat_channels (int): Number of hidden channels when stacked_convs
> 0. Defaults to 256.
use_depthwise (bool): Whether to use DepthwiseSeparableConv.
Defaults to False.
conv_cfg (:obj:`ConfigDict` or dict, Optional): Dictionary to construct
and config conv layer. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict, Optional): Dictionary to construct
and config norm layer. Defaults to None.
act_cfg (:obj:`ConfigDict` or dict, Optional): Dictionary to construct
and config activation layer. Defaults to None.
anchor_generator (:obj:`ConfigDict` or dict): Config dict for anchor
generator.
bbox_coder (:obj:`ConfigDict` or dict): Config of bounding box coder.
reg_decoded_bbox (bool): If true, the regression loss would be
applied directly on decoded bounding boxes, converting both
the predicted boxes and regression targets to absolute
coordinates format. Defaults to False. It should be `True` when
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
train_cfg (:obj:`ConfigDict` or dict, Optional): Training config of
anchor head.
test_cfg (:obj:`ConfigDict` or dict, Optional): Testing config of
anchor head.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict], Optional): Initialization config dict.
""" # noqa: W605
def __init__(
self,
num_classes: int = 80,
in_channels: Sequence[int] = (512, 1024, 512, 256, 256, 256),
stacked_convs: int = 0,
feat_channels: int = 256,
use_depthwise: bool = False,
conv_cfg: Optional[ConfigType] = None,
norm_cfg: Optional[ConfigType] = None,
act_cfg: Optional[ConfigType] = None,
anchor_generator: ConfigType = dict(
type='SSDAnchorGenerator',
scale_major=False,
input_size=300,
strides=[8, 16, 32, 64, 100, 300],
ratios=([2], [2, 3], [2, 3], [2, 3], [2], [2]),
basesize_ratio_range=(0.1, 0.9)),
bbox_coder: ConfigType = dict(
type='DeltaXYWHBBoxCoder',
clip_border=True,
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
),
reg_decoded_bbox: bool = False,
train_cfg: Optional[ConfigType] = None,
test_cfg: Optional[ConfigType] = None,
init_cfg: MultiConfig = dict(
type='Xavier', layer='Conv2d', distribution='uniform', bias=0)
) -> None:
super(AnchorHead, self).__init__(init_cfg=init_cfg)
self.num_classes = num_classes
self.in_channels = in_channels
self.stacked_convs = stacked_convs
self.feat_channels = feat_channels
self.use_depthwise = use_depthwise
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.cls_out_channels = num_classes + 1 # add background class
self.prior_generator = TASK_UTILS.build(anchor_generator)
# Usually the numbers of anchors for each level are the same
# except SSD detectors. So it is an int in the most dense
# heads but a list of int in SSDHead
self.num_base_priors = self.prior_generator.num_base_priors
self._init_layers()
self.bbox_coder = TASK_UTILS.build(bbox_coder)
self.reg_decoded_bbox = reg_decoded_bbox
self.use_sigmoid_cls = False
self.cls_focal_loss = False
self.train_cfg = train_cfg
self.test_cfg = test_cfg
if self.train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
if self.train_cfg.get('sampler', None) is not None:
self.sampler = TASK_UTILS.build(
self.train_cfg['sampler'], default_args=dict(context=self))
else:
self.sampler = PseudoSampler(context=self)
def _init_layers(self) -> None:
"""Initialize layers of the head."""
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
# TODO: Use registry to choose ConvModule type
conv = DepthwiseSeparableConvModule \
if self.use_depthwise else ConvModule
for channel, num_base_priors in zip(self.in_channels,
self.num_base_priors):
cls_layers = []
reg_layers = []
in_channel = channel
# build stacked conv tower, not used in default ssd
for i in range(self.stacked_convs):
cls_layers.append(
conv(
in_channel,
self.feat_channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
reg_layers.append(
conv(
in_channel,
self.feat_channels,
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
in_channel = self.feat_channels
# SSD-Lite head
if self.use_depthwise:
cls_layers.append(
ConvModule(
in_channel,
in_channel,
3,
padding=1,
groups=in_channel,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
reg_layers.append(
ConvModule(
in_channel,
in_channel,
3,
padding=1,
groups=in_channel,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
cls_layers.append(
nn.Conv2d(
in_channel,
num_base_priors * self.cls_out_channels,
kernel_size=1 if self.use_depthwise else 3,
padding=0 if self.use_depthwise else 1))
reg_layers.append(
nn.Conv2d(
in_channel,
num_base_priors * 4,
kernel_size=1 if self.use_depthwise else 3,
padding=0 if self.use_depthwise else 1))
self.cls_convs.append(nn.Sequential(*cls_layers))
self.reg_convs.append(nn.Sequential(*reg_layers))
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor], List[Tensor]]:
"""Forward features from the upstream network.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple[list[Tensor], list[Tensor]]: A tuple of cls_scores list and
bbox_preds list.
- cls_scores (list[Tensor]): Classification scores for all scale \
levels, each is a 4D-tensor, the channels number is \
num_anchors * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for all scale \
levels, each is a 4D-tensor, the channels number is \
num_anchors * 4.
"""
cls_scores = []
bbox_preds = []
for feat, reg_conv, cls_conv in zip(x, self.reg_convs, self.cls_convs):
cls_scores.append(cls_conv(feat))
bbox_preds.append(reg_conv(feat))
return cls_scores, bbox_preds
def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor,
anchor: Tensor, labels: Tensor,
label_weights: Tensor, bbox_targets: Tensor,
bbox_weights: Tensor,
avg_factor: int) -> Tuple[Tensor, Tensor]:
"""Compute loss of a single image.
Args:
cls_score (Tensor): Box scores for eachimage
Has shape (num_total_anchors, num_classes).
bbox_pred (Tensor): Box energies / deltas for each image
level with shape (num_total_anchors, 4).
anchors (Tensor): Box reference for each scale level with shape
(num_total_anchors, 4).
labels (Tensor): Labels of each anchors with shape
(num_total_anchors,).
label_weights (Tensor): Label weights of each anchor with shape
(num_total_anchors,)
bbox_targets (Tensor): BBox regression targets of each anchor
weight shape (num_total_anchors, 4).
bbox_weights (Tensor): BBox regression loss weights of each anchor
with shape (num_total_anchors, 4).
avg_factor (int): Average factor that is used to average
the loss. When using sampling method, avg_factor is usually
the sum of positive and negative priors. When using
`PseudoSampler`, `avg_factor` is usually equal to the number
of positive priors.
Returns:
Tuple[Tensor, Tensor]: A tuple of cls loss and bbox loss of one
feature map.
"""
loss_cls_all = F.cross_entropy(
cls_score, labels, reduction='none') * label_weights
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
pos_inds = ((labels >= 0) & (labels < self.num_classes)).nonzero(
as_tuple=False).reshape(-1)
neg_inds = (labels == self.num_classes).nonzero(
as_tuple=False).view(-1)
num_pos_samples = pos_inds.size(0)
num_neg_samples = self.train_cfg['neg_pos_ratio'] * num_pos_samples
if num_neg_samples > neg_inds.size(0):
num_neg_samples = neg_inds.size(0)
topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples)
loss_cls_pos = loss_cls_all[pos_inds].sum()
loss_cls_neg = topk_loss_cls_neg.sum()
loss_cls = (loss_cls_pos + loss_cls_neg) / avg_factor
if self.reg_decoded_bbox:
# When the regression loss (e.g. `IouLoss`, `GIouLoss`)
# is applied directly on the decoded bounding boxes, it
# decodes the already encoded coordinates to absolute format.
bbox_pred = self.bbox_coder.decode(anchor, bbox_pred)
loss_bbox = smooth_l1_loss(
bbox_pred,
bbox_targets,
bbox_weights,
beta=self.train_cfg['smoothl1_beta'],
avg_factor=avg_factor)
return loss_cls[None], loss_bbox
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None
) -> Dict[str, List[Tensor]]:
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W)
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, list[Tensor]]: A dictionary of loss components. the dict
has components below:
- loss_cls (list[Tensor]): A list containing each feature map \
classification loss.
- loss_bbox (list[Tensor]): A list containing each feature map \
regression loss.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
cls_reg_targets = self.get_targets(
anchor_list,
valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore,
unmap_outputs=True)
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
avg_factor) = cls_reg_targets
num_images = len(batch_img_metas)
all_cls_scores = torch.cat([
s.permute(0, 2, 3, 1).reshape(
num_images, -1, self.cls_out_channels) for s in cls_scores
], 1)
all_labels = torch.cat(labels_list, -1).view(num_images, -1)
all_label_weights = torch.cat(label_weights_list,
-1).view(num_images, -1)
all_bbox_preds = torch.cat([
b.permute(0, 2, 3, 1).reshape(num_images, -1, 4)
for b in bbox_preds
], -2)
all_bbox_targets = torch.cat(bbox_targets_list,
-2).view(num_images, -1, 4)
all_bbox_weights = torch.cat(bbox_weights_list,
-2).view(num_images, -1, 4)
# concat all level anchors to a single tensor
all_anchors = []
for i in range(num_images):
all_anchors.append(torch.cat(anchor_list[i]))
losses_cls, losses_bbox = multi_apply(
self.loss_by_feat_single,
all_cls_scores,
all_bbox_preds,
all_anchors,
all_labels,
all_label_weights,
all_bbox_targets,
all_bbox_weights,
avg_factor=avg_factor)
return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
|