File size: 15,517 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptInstanceList
from ..losses import smooth_l1_loss
from ..task_modules.samplers import PseudoSampler
from ..utils import multi_apply
from .anchor_head import AnchorHead


# TODO: add loss evaluator for SSD
@MODELS.register_module()
class SSDHead(AnchorHead):
    """Implementation of `SSD head <https://arxiv.org/abs/1512.02325>`_

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (Sequence[int]): Number of channels in the input feature
            map.
        stacked_convs (int): Number of conv layers in cls and reg tower.
            Defaults to 0.
        feat_channels (int): Number of hidden channels when stacked_convs
            > 0. Defaults to 256.
        use_depthwise (bool): Whether to use DepthwiseSeparableConv.
            Defaults to False.
        conv_cfg (:obj:`ConfigDict` or dict, Optional): Dictionary to construct
            and config conv layer. Defaults to None.
        norm_cfg (:obj:`ConfigDict` or dict, Optional): Dictionary to construct
            and config norm layer. Defaults to None.
        act_cfg (:obj:`ConfigDict` or dict, Optional): Dictionary to construct
            and config activation layer. Defaults to None.
        anchor_generator (:obj:`ConfigDict` or dict): Config dict for anchor
            generator.
        bbox_coder (:obj:`ConfigDict` or dict): Config of bounding box coder.
        reg_decoded_bbox (bool): If true, the regression loss would be
            applied directly on decoded bounding boxes, converting both
            the predicted boxes and regression targets to absolute
            coordinates format. Defaults to False. It should be `True` when
            using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
        train_cfg (:obj:`ConfigDict` or dict, Optional): Training config of
            anchor head.
        test_cfg (:obj:`ConfigDict` or dict, Optional): Testing config of
            anchor head.
        init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
            dict], Optional): Initialization config dict.
    """  # noqa: W605

    def __init__(
        self,
        num_classes: int = 80,
        in_channels: Sequence[int] = (512, 1024, 512, 256, 256, 256),
        stacked_convs: int = 0,
        feat_channels: int = 256,
        use_depthwise: bool = False,
        conv_cfg: Optional[ConfigType] = None,
        norm_cfg: Optional[ConfigType] = None,
        act_cfg: Optional[ConfigType] = None,
        anchor_generator: ConfigType = dict(
            type='SSDAnchorGenerator',
            scale_major=False,
            input_size=300,
            strides=[8, 16, 32, 64, 100, 300],
            ratios=([2], [2, 3], [2, 3], [2, 3], [2], [2]),
            basesize_ratio_range=(0.1, 0.9)),
        bbox_coder: ConfigType = dict(
            type='DeltaXYWHBBoxCoder',
            clip_border=True,
            target_means=[.0, .0, .0, .0],
            target_stds=[1.0, 1.0, 1.0, 1.0],
        ),
        reg_decoded_bbox: bool = False,
        train_cfg: Optional[ConfigType] = None,
        test_cfg: Optional[ConfigType] = None,
        init_cfg: MultiConfig = dict(
            type='Xavier', layer='Conv2d', distribution='uniform', bias=0)
    ) -> None:
        super(AnchorHead, self).__init__(init_cfg=init_cfg)
        self.num_classes = num_classes
        self.in_channels = in_channels
        self.stacked_convs = stacked_convs
        self.feat_channels = feat_channels
        self.use_depthwise = use_depthwise
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg

        self.cls_out_channels = num_classes + 1  # add background class
        self.prior_generator = TASK_UTILS.build(anchor_generator)

        # Usually the numbers of anchors for each level are the same
        # except SSD detectors. So it is an int in the most dense
        # heads but a list of int in SSDHead
        self.num_base_priors = self.prior_generator.num_base_priors

        self._init_layers()

        self.bbox_coder = TASK_UTILS.build(bbox_coder)
        self.reg_decoded_bbox = reg_decoded_bbox
        self.use_sigmoid_cls = False
        self.cls_focal_loss = False
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        if self.train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
            if self.train_cfg.get('sampler', None) is not None:
                self.sampler = TASK_UTILS.build(
                    self.train_cfg['sampler'], default_args=dict(context=self))
            else:
                self.sampler = PseudoSampler(context=self)

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        # TODO: Use registry to choose ConvModule type
        conv = DepthwiseSeparableConvModule \
            if self.use_depthwise else ConvModule

        for channel, num_base_priors in zip(self.in_channels,
                                            self.num_base_priors):
            cls_layers = []
            reg_layers = []
            in_channel = channel
            # build stacked conv tower, not used in default ssd
            for i in range(self.stacked_convs):
                cls_layers.append(
                    conv(
                        in_channel,
                        self.feat_channels,
                        3,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg))
                reg_layers.append(
                    conv(
                        in_channel,
                        self.feat_channels,
                        3,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg))
                in_channel = self.feat_channels
            # SSD-Lite head
            if self.use_depthwise:
                cls_layers.append(
                    ConvModule(
                        in_channel,
                        in_channel,
                        3,
                        padding=1,
                        groups=in_channel,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg))
                reg_layers.append(
                    ConvModule(
                        in_channel,
                        in_channel,
                        3,
                        padding=1,
                        groups=in_channel,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg))
            cls_layers.append(
                nn.Conv2d(
                    in_channel,
                    num_base_priors * self.cls_out_channels,
                    kernel_size=1 if self.use_depthwise else 3,
                    padding=0 if self.use_depthwise else 1))
            reg_layers.append(
                nn.Conv2d(
                    in_channel,
                    num_base_priors * 4,
                    kernel_size=1 if self.use_depthwise else 3,
                    padding=0 if self.use_depthwise else 1))
            self.cls_convs.append(nn.Sequential(*cls_layers))
            self.reg_convs.append(nn.Sequential(*reg_layers))

    def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor], List[Tensor]]:
        """Forward features from the upstream network.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple[list[Tensor], list[Tensor]]: A tuple of cls_scores list and
            bbox_preds list.

            - cls_scores (list[Tensor]): Classification scores for all scale \
            levels, each is a 4D-tensor, the channels number is \
            num_anchors * num_classes.
            - bbox_preds (list[Tensor]): Box energies / deltas for all scale \
            levels, each is a 4D-tensor, the channels number is \
            num_anchors * 4.
        """
        cls_scores = []
        bbox_preds = []
        for feat, reg_conv, cls_conv in zip(x, self.reg_convs, self.cls_convs):
            cls_scores.append(cls_conv(feat))
            bbox_preds.append(reg_conv(feat))
        return cls_scores, bbox_preds

    def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor,
                            anchor: Tensor, labels: Tensor,
                            label_weights: Tensor, bbox_targets: Tensor,
                            bbox_weights: Tensor,
                            avg_factor: int) -> Tuple[Tensor, Tensor]:
        """Compute loss of a single image.

        Args:
            cls_score (Tensor): Box scores for eachimage
                Has shape (num_total_anchors, num_classes).
            bbox_pred (Tensor): Box energies / deltas for each image
                level with shape (num_total_anchors, 4).
            anchors (Tensor): Box reference for each scale level with shape
                (num_total_anchors, 4).
            labels (Tensor): Labels of each anchors with shape
                (num_total_anchors,).
            label_weights (Tensor): Label weights of each anchor with shape
                (num_total_anchors,)
            bbox_targets (Tensor): BBox regression targets of each anchor
                weight shape (num_total_anchors, 4).
            bbox_weights (Tensor): BBox regression loss weights of each anchor
                with shape (num_total_anchors, 4).
            avg_factor (int): Average factor that is used to average
                the loss. When using sampling method, avg_factor is usually
                the sum of positive and negative priors. When using
                `PseudoSampler`, `avg_factor` is usually equal to the number
                of positive priors.

        Returns:
            Tuple[Tensor, Tensor]: A tuple of cls loss and bbox loss of one
            feature map.
        """

        loss_cls_all = F.cross_entropy(
            cls_score, labels, reduction='none') * label_weights
        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        pos_inds = ((labels >= 0) & (labels < self.num_classes)).nonzero(
            as_tuple=False).reshape(-1)
        neg_inds = (labels == self.num_classes).nonzero(
            as_tuple=False).view(-1)

        num_pos_samples = pos_inds.size(0)
        num_neg_samples = self.train_cfg['neg_pos_ratio'] * num_pos_samples
        if num_neg_samples > neg_inds.size(0):
            num_neg_samples = neg_inds.size(0)
        topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples)
        loss_cls_pos = loss_cls_all[pos_inds].sum()
        loss_cls_neg = topk_loss_cls_neg.sum()
        loss_cls = (loss_cls_pos + loss_cls_neg) / avg_factor

        if self.reg_decoded_bbox:
            # When the regression loss (e.g. `IouLoss`, `GIouLoss`)
            # is applied directly on the decoded bounding boxes, it
            # decodes the already encoded coordinates to absolute format.
            bbox_pred = self.bbox_coder.decode(anchor, bbox_pred)

        loss_bbox = smooth_l1_loss(
            bbox_pred,
            bbox_targets,
            bbox_weights,
            beta=self.train_cfg['smoothl1_beta'],
            avg_factor=avg_factor)
        return loss_cls[None], loss_bbox

    def loss_by_feat(
        self,
        cls_scores: List[Tensor],
        bbox_preds: List[Tensor],
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        batch_gt_instances_ignore: OptInstanceList = None
    ) -> Dict[str, List[Tensor]]:
        """Compute losses of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W)
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, list[Tensor]]: A dictionary of loss components. the dict
            has components below:

            - loss_cls (list[Tensor]): A list containing each feature map \
            classification loss.
            - loss_bbox (list[Tensor]): A list containing each feature map \
            regression loss.
        """
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.prior_generator.num_levels

        device = cls_scores[0].device

        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, batch_img_metas, device=device)
        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            batch_gt_instances,
            batch_img_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore,
            unmap_outputs=True)
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         avg_factor) = cls_reg_targets

        num_images = len(batch_img_metas)
        all_cls_scores = torch.cat([
            s.permute(0, 2, 3, 1).reshape(
                num_images, -1, self.cls_out_channels) for s in cls_scores
        ], 1)
        all_labels = torch.cat(labels_list, -1).view(num_images, -1)
        all_label_weights = torch.cat(label_weights_list,
                                      -1).view(num_images, -1)
        all_bbox_preds = torch.cat([
            b.permute(0, 2, 3, 1).reshape(num_images, -1, 4)
            for b in bbox_preds
        ], -2)
        all_bbox_targets = torch.cat(bbox_targets_list,
                                     -2).view(num_images, -1, 4)
        all_bbox_weights = torch.cat(bbox_weights_list,
                                     -2).view(num_images, -1, 4)

        # concat all level anchors to a single tensor
        all_anchors = []
        for i in range(num_images):
            all_anchors.append(torch.cat(anchor_list[i]))

        losses_cls, losses_bbox = multi_apply(
            self.loss_by_feat_single,
            all_cls_scores,
            all_bbox_preds,
            all_anchors,
            all_labels,
            all_label_weights,
            all_bbox_targets,
            all_bbox_weights,
            avg_factor=avg_factor)
        return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)