File size: 12,882 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmcv.ops import batched_nms
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.structures.bbox import (cat_boxes, empty_box_as, get_box_tensor,
                                   get_box_wh, scale_boxes)
from mmdet.utils import InstanceList, MultiConfig, OptInstanceList
from .anchor_head import AnchorHead


@MODELS.register_module()
class RPNHead(AnchorHead):
    """Implementation of RPN head.

    Args:
        in_channels (int): Number of channels in the input feature map.
        num_classes (int): Number of categories excluding the background
            category. Defaults to 1.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \
            list[dict]): Initialization config dict.
        num_convs (int): Number of convolution layers in the head.
            Defaults to 1.
    """  # noqa: W605

    def __init__(self,
                 in_channels: int,
                 num_classes: int = 1,
                 init_cfg: MultiConfig = dict(
                     type='Normal', layer='Conv2d', std=0.01),
                 num_convs: int = 1,
                 **kwargs) -> None:
        self.num_convs = num_convs
        assert num_classes == 1
        super().__init__(
            num_classes=num_classes,
            in_channels=in_channels,
            init_cfg=init_cfg,
            **kwargs)

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        if self.num_convs > 1:
            rpn_convs = []
            for i in range(self.num_convs):
                if i == 0:
                    in_channels = self.in_channels
                else:
                    in_channels = self.feat_channels
                # use ``inplace=False`` to avoid error: one of the variables
                # needed for gradient computation has been modified by an
                # inplace operation.
                rpn_convs.append(
                    ConvModule(
                        in_channels,
                        self.feat_channels,
                        3,
                        padding=1,
                        inplace=False))
            self.rpn_conv = nn.Sequential(*rpn_convs)
        else:
            self.rpn_conv = nn.Conv2d(
                self.in_channels, self.feat_channels, 3, padding=1)
        self.rpn_cls = nn.Conv2d(self.feat_channels,
                                 self.num_base_priors * self.cls_out_channels,
                                 1)
        reg_dim = self.bbox_coder.encode_size
        self.rpn_reg = nn.Conv2d(self.feat_channels,
                                 self.num_base_priors * reg_dim, 1)

    def forward_single(self, x: Tensor) -> Tuple[Tensor, Tensor]:
        """Forward feature of a single scale level.

        Args:
            x (Tensor): Features of a single scale level.

        Returns:
            tuple:
                cls_score (Tensor): Cls scores for a single scale level \
                    the channels number is num_base_priors * num_classes.
                bbox_pred (Tensor): Box energies / deltas for a single scale \
                    level, the channels number is num_base_priors * 4.
        """
        x = self.rpn_conv(x)
        x = F.relu(x)
        rpn_cls_score = self.rpn_cls(x)
        rpn_bbox_pred = self.rpn_reg(x)
        return rpn_cls_score, rpn_bbox_pred

    def loss_by_feat(self,
                     cls_scores: List[Tensor],
                     bbox_preds: List[Tensor],
                     batch_gt_instances: InstanceList,
                     batch_img_metas: List[dict],
                     batch_gt_instances_ignore: OptInstanceList = None) \
            -> dict:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                has shape (N, num_anchors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W).
            batch_gt_instances (list[obj:InstanceData]): Batch of gt_instance.
                It usually includes ``bboxes`` and ``labels`` attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[obj:InstanceData], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        losses = super().loss_by_feat(
            cls_scores,
            bbox_preds,
            batch_gt_instances,
            batch_img_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore)
        return dict(
            loss_rpn_cls=losses['loss_cls'], loss_rpn_bbox=losses['loss_bbox'])

    def _predict_by_feat_single(self,
                                cls_score_list: List[Tensor],
                                bbox_pred_list: List[Tensor],
                                score_factor_list: List[Tensor],
                                mlvl_priors: List[Tensor],
                                img_meta: dict,
                                cfg: ConfigDict,
                                rescale: bool = False,
                                with_nms: bool = True) -> InstanceData:
        """Transform a single image's features extracted from the head into
        bbox results.

        Args:
            cls_score_list (list[Tensor]): Box scores from all scale
                levels of a single image, each item has shape
                (num_priors * num_classes, H, W).
            bbox_pred_list (list[Tensor]): Box energies / deltas from
                all scale levels of a single image, each item has shape
                (num_priors * 4, H, W).
            score_factor_list (list[Tensor]): Be compatible with
                BaseDenseHead. Not used in RPNHead.
            mlvl_priors (list[Tensor]): Each element in the list is
                the priors of a single level in feature pyramid. In all
                anchor-based methods, it has shape (num_priors, 4). In
                all anchor-free methods, it has shape (num_priors, 2)
                when `with_stride=True`, otherwise it still has shape
                (num_priors, 4).
            img_meta (dict): Image meta info.
            cfg (ConfigDict, optional): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            :obj:`InstanceData`: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        cfg = self.test_cfg if cfg is None else cfg
        cfg = copy.deepcopy(cfg)
        img_shape = img_meta['img_shape']
        nms_pre = cfg.get('nms_pre', -1)

        mlvl_bbox_preds = []
        mlvl_valid_priors = []
        mlvl_scores = []
        level_ids = []
        for level_idx, (cls_score, bbox_pred, priors) in \
                enumerate(zip(cls_score_list, bbox_pred_list,
                              mlvl_priors)):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]

            reg_dim = self.bbox_coder.encode_size
            bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, reg_dim)
            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.cls_out_channels)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                # remind that we set FG labels to [0] since mmdet v2.0
                # BG cat_id: 1
                scores = cls_score.softmax(-1)[:, :-1]

            scores = torch.squeeze(scores)
            if 0 < nms_pre < scores.shape[0]:
                # sort is faster than topk
                # _, topk_inds = scores.topk(cfg.nms_pre)
                ranked_scores, rank_inds = scores.sort(descending=True)
                topk_inds = rank_inds[:nms_pre]
                scores = ranked_scores[:nms_pre]
                bbox_pred = bbox_pred[topk_inds, :]
                priors = priors[topk_inds]

            mlvl_bbox_preds.append(bbox_pred)
            mlvl_valid_priors.append(priors)
            mlvl_scores.append(scores)

            # use level id to implement the separate level nms
            level_ids.append(
                scores.new_full((scores.size(0), ),
                                level_idx,
                                dtype=torch.long))

        bbox_pred = torch.cat(mlvl_bbox_preds)
        priors = cat_boxes(mlvl_valid_priors)
        bboxes = self.bbox_coder.decode(priors, bbox_pred, max_shape=img_shape)

        results = InstanceData()
        results.bboxes = bboxes
        results.scores = torch.cat(mlvl_scores)
        results.level_ids = torch.cat(level_ids)

        return self._bbox_post_process(
            results=results, cfg=cfg, rescale=rescale, img_meta=img_meta)

    def _bbox_post_process(self,
                           results: InstanceData,
                           cfg: ConfigDict,
                           rescale: bool = False,
                           with_nms: bool = True,
                           img_meta: Optional[dict] = None) -> InstanceData:
        """bbox post-processing method.

        The boxes would be rescaled to the original image scale and do
        the nms operation.

        Args:
            results (:obj:`InstaceData`): Detection instance results,
                each item has shape (num_bboxes, ).
            cfg (ConfigDict): Test / postprocessing configuration.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.
            with_nms (bool): If True, do nms before return boxes.
                Default to True.
            img_meta (dict, optional): Image meta info. Defaults to None.

        Returns:
            :obj:`InstanceData`: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        assert with_nms, '`with_nms` must be True in RPNHead'
        if rescale:
            assert img_meta.get('scale_factor') is not None
            scale_factor = [1 / s for s in img_meta['scale_factor']]
            results.bboxes = scale_boxes(results.bboxes, scale_factor)

        # filter small size bboxes
        if cfg.get('min_bbox_size', -1) >= 0:
            w, h = get_box_wh(results.bboxes)
            valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size)
            if not valid_mask.all():
                results = results[valid_mask]

        if results.bboxes.numel() > 0:
            bboxes = get_box_tensor(results.bboxes)
            det_bboxes, keep_idxs = batched_nms(bboxes, results.scores,
                                                results.level_ids, cfg.nms)
            results = results[keep_idxs]
            # some nms would reweight the score, such as softnms
            results.scores = det_bboxes[:, -1]
            results = results[:cfg.max_per_img]
            # TODO: This would unreasonably show the 0th class label
            #  in visualization
            results.labels = results.scores.new_zeros(
                len(results), dtype=torch.long)
            del results.level_ids
        else:
            # To avoid some potential error
            results_ = InstanceData()
            results_.bboxes = empty_box_as(results.bboxes)
            results_.scores = results.scores.new_zeros(0)
            results_.labels = results.scores.new_zeros(0)
            results = results_
        return results