File size: 10,750 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple

import torch
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox_overlaps
from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean
from ..utils import multi_apply, unpack_gt_instances
from .gfl_head import GFLHead


@MODELS.register_module()
class LDHead(GFLHead):
    """Localization distillation Head. (Short description)

    It utilizes the learned bbox distributions to transfer the localization
    dark knowledge from teacher to student. Original paper: `Localization
    Distillation for Object Detection. <https://arxiv.org/abs/2102.12252>`_

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        loss_ld (:obj:`ConfigDict` or dict): Config of Localization
            Distillation Loss (LD), T is the temperature for distillation.
    """

    def __init__(self,
                 num_classes: int,
                 in_channels: int,
                 loss_ld: ConfigType = dict(
                     type='LocalizationDistillationLoss',
                     loss_weight=0.25,
                     T=10),
                 **kwargs) -> dict:

        super().__init__(
            num_classes=num_classes, in_channels=in_channels, **kwargs)
        self.loss_ld = MODELS.build(loss_ld)

    def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor,
                            bbox_pred: Tensor, labels: Tensor,
                            label_weights: Tensor, bbox_targets: Tensor,
                            stride: Tuple[int], soft_targets: Tensor,
                            avg_factor: int):
        """Calculate the loss of a single scale level based on the features
        extracted by the detection head.

        Args:
            anchors (Tensor): Box reference for each scale level with shape
                (N, num_total_anchors, 4).
            cls_score (Tensor): Cls and quality joint scores for each scale
                level has shape (N, num_classes, H, W).
            bbox_pred (Tensor): Box distribution logits for each scale
                level with shape (N, 4*(n+1), H, W), n is max value of integral
                set.
            labels (Tensor): Labels of each anchors with shape
                (N, num_total_anchors).
            label_weights (Tensor): Label weights of each anchor with shape
                (N, num_total_anchors)
            bbox_targets (Tensor): BBox regression targets of each anchor
                weight shape (N, num_total_anchors, 4).
            stride (tuple): Stride in this scale level.
            soft_targets (Tensor): Soft BBox regression targets.
            avg_factor (int): Average factor that is used to average
                the loss. When using sampling method, avg_factor is usually
                the sum of positive and negative priors. When using
                `PseudoSampler`, `avg_factor` is usually equal to the number
                of positive priors.

        Returns:
            dict[tuple, Tensor]: Loss components and weight targets.
        """
        assert stride[0] == stride[1], 'h stride is not equal to w stride!'
        anchors = anchors.reshape(-1, 4)
        cls_score = cls_score.permute(0, 2, 3,
                                      1).reshape(-1, self.cls_out_channels)
        bbox_pred = bbox_pred.permute(0, 2, 3,
                                      1).reshape(-1, 4 * (self.reg_max + 1))
        soft_targets = soft_targets.permute(0, 2, 3,
                                            1).reshape(-1,
                                                       4 * (self.reg_max + 1))

        bbox_targets = bbox_targets.reshape(-1, 4)
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)

        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        bg_class_ind = self.num_classes
        pos_inds = ((labels >= 0)
                    & (labels < bg_class_ind)).nonzero().squeeze(1)
        score = label_weights.new_zeros(labels.shape)

        if len(pos_inds) > 0:
            pos_bbox_targets = bbox_targets[pos_inds]
            pos_bbox_pred = bbox_pred[pos_inds]
            pos_anchors = anchors[pos_inds]
            pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0]

            weight_targets = cls_score.detach().sigmoid()
            weight_targets = weight_targets.max(dim=1)[0][pos_inds]
            pos_bbox_pred_corners = self.integral(pos_bbox_pred)
            pos_decode_bbox_pred = self.bbox_coder.decode(
                pos_anchor_centers, pos_bbox_pred_corners)
            pos_decode_bbox_targets = pos_bbox_targets / stride[0]
            score[pos_inds] = bbox_overlaps(
                pos_decode_bbox_pred.detach(),
                pos_decode_bbox_targets,
                is_aligned=True)
            pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1)
            pos_soft_targets = soft_targets[pos_inds]
            soft_corners = pos_soft_targets.reshape(-1, self.reg_max + 1)

            target_corners = self.bbox_coder.encode(pos_anchor_centers,
                                                    pos_decode_bbox_targets,
                                                    self.reg_max).reshape(-1)

            # regression loss
            loss_bbox = self.loss_bbox(
                pos_decode_bbox_pred,
                pos_decode_bbox_targets,
                weight=weight_targets,
                avg_factor=1.0)

            # dfl loss
            loss_dfl = self.loss_dfl(
                pred_corners,
                target_corners,
                weight=weight_targets[:, None].expand(-1, 4).reshape(-1),
                avg_factor=4.0)

            # ld loss
            loss_ld = self.loss_ld(
                pred_corners,
                soft_corners,
                weight=weight_targets[:, None].expand(-1, 4).reshape(-1),
                avg_factor=4.0)

        else:
            loss_ld = bbox_pred.sum() * 0
            loss_bbox = bbox_pred.sum() * 0
            loss_dfl = bbox_pred.sum() * 0
            weight_targets = bbox_pred.new_tensor(0)

        # cls (qfl) loss
        loss_cls = self.loss_cls(
            cls_score, (labels, score),
            weight=label_weights,
            avg_factor=avg_factor)

        return loss_cls, loss_bbox, loss_dfl, loss_ld, weight_targets.sum()

    def loss(self, x: List[Tensor], out_teacher: Tuple[Tensor],
             batch_data_samples: SampleList) -> dict:
        """
        Args:
            x (list[Tensor]): Features from FPN.
            out_teacher (tuple[Tensor]): The output of teacher.
            batch_data_samples (list[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.

        Returns:
            tuple[dict, list]: The loss components and proposals of each image.

            - losses (dict[str, Tensor]): A dictionary of loss components.
            - proposal_list (list[Tensor]): Proposals of each image.
        """
        outputs = unpack_gt_instances(batch_data_samples)
        batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \
            = outputs

        outs = self(x)
        soft_targets = out_teacher[1]
        loss_inputs = outs + (batch_gt_instances, batch_img_metas,
                              soft_targets)
        losses = self.loss_by_feat(
            *loss_inputs, batch_gt_instances_ignore=batch_gt_instances_ignore)

        return losses

    def loss_by_feat(
            self,
            cls_scores: List[Tensor],
            bbox_preds: List[Tensor],
            batch_gt_instances: InstanceList,
            batch_img_metas: List[dict],
            soft_targets: List[Tensor],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        """Compute losses of the head.

        Args:
            cls_scores (list[Tensor]): Cls and quality scores for each scale
                level has shape (N, num_classes, H, W).
            bbox_preds (list[Tensor]): Box distribution logits for each scale
                level with shape (N, 4*(n+1), H, W), n is max value of integral
                set.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.
            soft_targets (list[Tensor]): Soft BBox regression targets.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """

        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.prior_generator.num_levels

        device = cls_scores[0].device
        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, batch_img_metas, device=device)

        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            batch_gt_instances,
            batch_img_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore)

        (anchor_list, labels_list, label_weights_list, bbox_targets_list,
         bbox_weights_list, avg_factor) = cls_reg_targets

        avg_factor = reduce_mean(
            torch.tensor(avg_factor, dtype=torch.float, device=device)).item()

        losses_cls, losses_bbox, losses_dfl, losses_ld, \
            avg_factor = multi_apply(
                self.loss_by_feat_single,
                anchor_list,
                cls_scores,
                bbox_preds,
                labels_list,
                label_weights_list,
                bbox_targets_list,
                self.prior_generator.strides,
                soft_targets,
                avg_factor=avg_factor)

        avg_factor = sum(avg_factor) + 1e-6
        avg_factor = reduce_mean(avg_factor).item()
        losses_bbox = [x / avg_factor for x in losses_bbox]
        losses_dfl = [x / avg_factor for x in losses_dfl]
        return dict(
            loss_cls=losses_cls,
            loss_bbox=losses_bbox,
            loss_dfl=losses_dfl,
            loss_ld=losses_ld)