Spaces:
Runtime error
Runtime error
File size: 15,707 Bytes
3e06e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Dict, List, Tuple
import torch
import torch.nn as nn
from mmcv.cnn import Linear
from mmengine.model import bias_init_with_prob, constant_init
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.utils import InstanceList, OptInstanceList
from ..layers import inverse_sigmoid
from .detr_head import DETRHead
@MODELS.register_module()
class DeformableDETRHead(DETRHead):
r"""Head of DeformDETR: Deformable DETR: Deformable Transformers for
End-to-End Object Detection.
Code is modified from the `official github repo
<https://github.com/fundamentalvision/Deformable-DETR>`_.
More details can be found in the `paper
<https://arxiv.org/abs/2010.04159>`_ .
Args:
share_pred_layer (bool): Whether to share parameters for all the
prediction layers. Defaults to `False`.
num_pred_layer (int): The number of the prediction layers.
Defaults to 6.
as_two_stage (bool, optional): Whether to generate the proposal
from the outputs of encoder. Defaults to `False`.
"""
def __init__(self,
*args,
share_pred_layer: bool = False,
num_pred_layer: int = 6,
as_two_stage: bool = False,
**kwargs) -> None:
self.share_pred_layer = share_pred_layer
self.num_pred_layer = num_pred_layer
self.as_two_stage = as_two_stage
super().__init__(*args, **kwargs)
def _init_layers(self) -> None:
"""Initialize classification branch and regression branch of head."""
fc_cls = Linear(self.embed_dims, self.cls_out_channels)
reg_branch = []
for _ in range(self.num_reg_fcs):
reg_branch.append(Linear(self.embed_dims, self.embed_dims))
reg_branch.append(nn.ReLU())
reg_branch.append(Linear(self.embed_dims, 4))
reg_branch = nn.Sequential(*reg_branch)
if self.share_pred_layer:
self.cls_branches = nn.ModuleList(
[fc_cls for _ in range(self.num_pred_layer)])
self.reg_branches = nn.ModuleList(
[reg_branch for _ in range(self.num_pred_layer)])
else:
self.cls_branches = nn.ModuleList(
[copy.deepcopy(fc_cls) for _ in range(self.num_pred_layer)])
self.reg_branches = nn.ModuleList([
copy.deepcopy(reg_branch) for _ in range(self.num_pred_layer)
])
def init_weights(self) -> None:
"""Initialize weights of the Deformable DETR head."""
if self.loss_cls.use_sigmoid:
bias_init = bias_init_with_prob(0.01)
for m in self.cls_branches:
nn.init.constant_(m.bias, bias_init)
for m in self.reg_branches:
constant_init(m[-1], 0, bias=0)
nn.init.constant_(self.reg_branches[0][-1].bias.data[2:], -2.0)
if self.as_two_stage:
for m in self.reg_branches:
nn.init.constant_(m[-1].bias.data[2:], 0.0)
def forward(self, hidden_states: Tensor,
references: List[Tensor]) -> Tuple[Tensor]:
"""Forward function.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, bs, num_queries, dim).
references (list[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). The `init_reference` has shape (bs,
num_queries, 4) when `as_two_stage` of the detector is `True`,
otherwise (bs, num_queries, 2). Each `inter_reference` has
shape (bs, num_queries, 4) when `with_box_refine` of the
detector is `True`, otherwise (bs, num_queries, 2). The
coordinates are arranged as (cx, cy) when the last dimension is
2, and (cx, cy, w, h) when it is 4.
Returns:
tuple[Tensor]: results of head containing the following tensor.
- all_layers_outputs_classes (Tensor): Outputs from the
classification head, has shape (num_decoder_layers, bs,
num_queries, cls_out_channels).
- all_layers_outputs_coords (Tensor): Sigmoid outputs from the
regression head with normalized coordinate format (cx, cy, w,
h), has shape (num_decoder_layers, bs, num_queries, 4) with the
last dimension arranged as (cx, cy, w, h).
"""
all_layers_outputs_classes = []
all_layers_outputs_coords = []
for layer_id in range(hidden_states.shape[0]):
reference = inverse_sigmoid(references[layer_id])
# NOTE The last reference will not be used.
hidden_state = hidden_states[layer_id]
outputs_class = self.cls_branches[layer_id](hidden_state)
tmp_reg_preds = self.reg_branches[layer_id](hidden_state)
if reference.shape[-1] == 4:
# When `layer` is 0 and `as_two_stage` of the detector
# is `True`, or when `layer` is greater than 0 and
# `with_box_refine` of the detector is `True`.
tmp_reg_preds += reference
else:
# When `layer` is 0 and `as_two_stage` of the detector
# is `False`, or when `layer` is greater than 0 and
# `with_box_refine` of the detector is `False`.
assert reference.shape[-1] == 2
tmp_reg_preds[..., :2] += reference
outputs_coord = tmp_reg_preds.sigmoid()
all_layers_outputs_classes.append(outputs_class)
all_layers_outputs_coords.append(outputs_coord)
all_layers_outputs_classes = torch.stack(all_layers_outputs_classes)
all_layers_outputs_coords = torch.stack(all_layers_outputs_coords)
return all_layers_outputs_classes, all_layers_outputs_coords
def loss(self, hidden_states: Tensor, references: List[Tensor],
enc_outputs_class: Tensor, enc_outputs_coord: Tensor,
batch_data_samples: SampleList) -> dict:
"""Perform forward propagation and loss calculation of the detection
head on the queries of the upstream network.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, num_queries, bs, dim).
references (list[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). The `init_reference` has shape (bs,
num_queries, 4) when `as_two_stage` of the detector is `True`,
otherwise (bs, num_queries, 2). Each `inter_reference` has
shape (bs, num_queries, 4) when `with_box_refine` of the
detector is `True`, otherwise (bs, num_queries, 2). The
coordinates are arranged as (cx, cy) when the last dimension is
2, and (cx, cy, w, h) when it is 4.
enc_outputs_class (Tensor): The score of each point on encode
feature map, has shape (bs, num_feat_points, cls_out_channels).
Only when `as_two_stage` is `True` it would be passed in,
otherwise it would be `None`.
enc_outputs_coord (Tensor): The proposal generate from the encode
feature map, has shape (bs, num_feat_points, 4) with the last
dimension arranged as (cx, cy, w, h). Only when `as_two_stage`
is `True` it would be passed in, otherwise it would be `None`.
batch_data_samples (list[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
Returns:
dict: A dictionary of loss components.
"""
batch_gt_instances = []
batch_img_metas = []
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
batch_gt_instances.append(data_sample.gt_instances)
outs = self(hidden_states, references)
loss_inputs = outs + (enc_outputs_class, enc_outputs_coord,
batch_gt_instances, batch_img_metas)
losses = self.loss_by_feat(*loss_inputs)
return losses
def loss_by_feat(
self,
all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
enc_cls_scores: Tensor,
enc_bbox_preds: Tensor,
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None
) -> Dict[str, Tensor]:
"""Loss function.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs, num_queries,
cls_out_channels).
all_layers_bbox_preds (Tensor): Regression outputs of all decoder
layers. Each is a 4D-tensor with normalized coordinate format
(cx, cy, w, h) and has shape (num_decoder_layers, bs,
num_queries, 4) with the last dimension arranged as
(cx, cy, w, h).
enc_cls_scores (Tensor): The score of each point on encode
feature map, has shape (bs, num_feat_points, cls_out_channels).
Only when `as_two_stage` is `True` it would be passes in,
otherwise, it would be `None`.
enc_bbox_preds (Tensor): The proposal generate from the encode
feature map, has shape (bs, num_feat_points, 4) with the last
dimension arranged as (cx, cy, w, h). Only when `as_two_stage`
is `True` it would be passed in, otherwise it would be `None`.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
loss_dict = super().loss_by_feat(all_layers_cls_scores,
all_layers_bbox_preds,
batch_gt_instances, batch_img_metas,
batch_gt_instances_ignore)
# loss of proposal generated from encode feature map.
if enc_cls_scores is not None:
proposal_gt_instances = copy.deepcopy(batch_gt_instances)
for i in range(len(proposal_gt_instances)):
proposal_gt_instances[i].labels = torch.zeros_like(
proposal_gt_instances[i].labels)
enc_loss_cls, enc_losses_bbox, enc_losses_iou = \
self.loss_by_feat_single(
enc_cls_scores, enc_bbox_preds,
batch_gt_instances=proposal_gt_instances,
batch_img_metas=batch_img_metas)
loss_dict['enc_loss_cls'] = enc_loss_cls
loss_dict['enc_loss_bbox'] = enc_losses_bbox
loss_dict['enc_loss_iou'] = enc_losses_iou
return loss_dict
def predict(self,
hidden_states: Tensor,
references: List[Tensor],
batch_data_samples: SampleList,
rescale: bool = True) -> InstanceList:
"""Perform forward propagation and loss calculation of the detection
head on the queries of the upstream network.
Args:
hidden_states (Tensor): Hidden states output from each decoder
layer, has shape (num_decoder_layers, num_queries, bs, dim).
references (list[Tensor]): List of the reference from the decoder.
The first reference is the `init_reference` (initial) and the
other num_decoder_layers(6) references are `inter_references`
(intermediate). The `init_reference` has shape (bs,
num_queries, 4) when `as_two_stage` of the detector is `True`,
otherwise (bs, num_queries, 2). Each `inter_reference` has
shape (bs, num_queries, 4) when `with_box_refine` of the
detector is `True`, otherwise (bs, num_queries, 2). The
coordinates are arranged as (cx, cy) when the last dimension is
2, and (cx, cy, w, h) when it is 4.
batch_data_samples (list[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
rescale (bool, optional): If `True`, return boxes in original
image space. Defaults to `True`.
Returns:
list[obj:`InstanceData`]: Detection results of each image
after the post process.
"""
batch_img_metas = [
data_samples.metainfo for data_samples in batch_data_samples
]
outs = self(hidden_states, references)
predictions = self.predict_by_feat(
*outs, batch_img_metas=batch_img_metas, rescale=rescale)
return predictions
def predict_by_feat(self,
all_layers_cls_scores: Tensor,
all_layers_bbox_preds: Tensor,
batch_img_metas: List[Dict],
rescale: bool = False) -> InstanceList:
"""Transform a batch of output features extracted from the head into
bbox results.
Args:
all_layers_cls_scores (Tensor): Classification scores of all
decoder layers, has shape (num_decoder_layers, bs, num_queries,
cls_out_channels).
all_layers_bbox_preds (Tensor): Regression outputs of all decoder
layers. Each is a 4D-tensor with normalized coordinate format
(cx, cy, w, h) and shape (num_decoder_layers, bs, num_queries,
4) with the last dimension arranged as (cx, cy, w, h).
batch_img_metas (list[dict]): Meta information of each image.
rescale (bool, optional): If `True`, return boxes in original
image space. Default `False`.
Returns:
list[obj:`InstanceData`]: Detection results of each image
after the post process.
"""
cls_scores = all_layers_cls_scores[-1]
bbox_preds = all_layers_bbox_preds[-1]
result_list = []
for img_id in range(len(batch_img_metas)):
cls_score = cls_scores[img_id]
bbox_pred = bbox_preds[img_id]
img_meta = batch_img_metas[img_id]
results = self._predict_by_feat_single(cls_score, bbox_pred,
img_meta, rescale)
result_list.append(results)
return result_list
|