File size: 15,707 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Dict, List, Tuple

import torch
import torch.nn as nn
from mmcv.cnn import Linear
from mmengine.model import bias_init_with_prob, constant_init
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.utils import InstanceList, OptInstanceList
from ..layers import inverse_sigmoid
from .detr_head import DETRHead


@MODELS.register_module()
class DeformableDETRHead(DETRHead):
    r"""Head of DeformDETR: Deformable DETR: Deformable Transformers for
    End-to-End Object Detection.

    Code is modified from the `official github repo
    <https://github.com/fundamentalvision/Deformable-DETR>`_.

    More details can be found in the `paper
    <https://arxiv.org/abs/2010.04159>`_ .

    Args:
        share_pred_layer (bool): Whether to share parameters for all the
            prediction layers. Defaults to `False`.
        num_pred_layer (int): The number of the prediction layers.
            Defaults to 6.
        as_two_stage (bool, optional): Whether to generate the proposal
            from the outputs of encoder. Defaults to `False`.
    """

    def __init__(self,
                 *args,
                 share_pred_layer: bool = False,
                 num_pred_layer: int = 6,
                 as_two_stage: bool = False,
                 **kwargs) -> None:
        self.share_pred_layer = share_pred_layer
        self.num_pred_layer = num_pred_layer
        self.as_two_stage = as_two_stage

        super().__init__(*args, **kwargs)

    def _init_layers(self) -> None:
        """Initialize classification branch and regression branch of head."""
        fc_cls = Linear(self.embed_dims, self.cls_out_channels)
        reg_branch = []
        for _ in range(self.num_reg_fcs):
            reg_branch.append(Linear(self.embed_dims, self.embed_dims))
            reg_branch.append(nn.ReLU())
        reg_branch.append(Linear(self.embed_dims, 4))
        reg_branch = nn.Sequential(*reg_branch)

        if self.share_pred_layer:
            self.cls_branches = nn.ModuleList(
                [fc_cls for _ in range(self.num_pred_layer)])
            self.reg_branches = nn.ModuleList(
                [reg_branch for _ in range(self.num_pred_layer)])
        else:
            self.cls_branches = nn.ModuleList(
                [copy.deepcopy(fc_cls) for _ in range(self.num_pred_layer)])
            self.reg_branches = nn.ModuleList([
                copy.deepcopy(reg_branch) for _ in range(self.num_pred_layer)
            ])

    def init_weights(self) -> None:
        """Initialize weights of the Deformable DETR head."""
        if self.loss_cls.use_sigmoid:
            bias_init = bias_init_with_prob(0.01)
            for m in self.cls_branches:
                nn.init.constant_(m.bias, bias_init)
        for m in self.reg_branches:
            constant_init(m[-1], 0, bias=0)
        nn.init.constant_(self.reg_branches[0][-1].bias.data[2:], -2.0)
        if self.as_two_stage:
            for m in self.reg_branches:
                nn.init.constant_(m[-1].bias.data[2:], 0.0)

    def forward(self, hidden_states: Tensor,
                references: List[Tensor]) -> Tuple[Tensor]:
        """Forward function.

        Args:
            hidden_states (Tensor): Hidden states output from each decoder
                layer, has shape (num_decoder_layers, bs, num_queries, dim).
            references (list[Tensor]): List of the reference from the decoder.
                The first reference is the `init_reference` (initial) and the
                other num_decoder_layers(6) references are `inter_references`
                (intermediate). The `init_reference` has shape (bs,
                num_queries, 4) when `as_two_stage` of the detector is `True`,
                otherwise (bs, num_queries, 2). Each `inter_reference` has
                shape (bs, num_queries, 4) when `with_box_refine` of the
                detector is `True`, otherwise (bs, num_queries, 2). The
                coordinates are arranged as (cx, cy) when the last dimension is
                2, and (cx, cy, w, h) when it is 4.

        Returns:
            tuple[Tensor]: results of head containing the following tensor.

            - all_layers_outputs_classes (Tensor): Outputs from the
              classification head, has shape (num_decoder_layers, bs,
              num_queries, cls_out_channels).
            - all_layers_outputs_coords (Tensor): Sigmoid outputs from the
              regression head with normalized coordinate format (cx, cy, w,
              h), has shape (num_decoder_layers, bs, num_queries, 4) with the
              last dimension arranged as (cx, cy, w, h).
        """
        all_layers_outputs_classes = []
        all_layers_outputs_coords = []

        for layer_id in range(hidden_states.shape[0]):
            reference = inverse_sigmoid(references[layer_id])
            # NOTE The last reference will not be used.
            hidden_state = hidden_states[layer_id]
            outputs_class = self.cls_branches[layer_id](hidden_state)
            tmp_reg_preds = self.reg_branches[layer_id](hidden_state)
            if reference.shape[-1] == 4:
                # When `layer` is 0 and `as_two_stage` of the detector
                # is `True`, or when `layer` is greater than 0 and
                # `with_box_refine` of the detector is `True`.
                tmp_reg_preds += reference
            else:
                # When `layer` is 0 and `as_two_stage` of the detector
                # is `False`, or when `layer` is greater than 0 and
                # `with_box_refine` of the detector is `False`.
                assert reference.shape[-1] == 2
                tmp_reg_preds[..., :2] += reference
            outputs_coord = tmp_reg_preds.sigmoid()
            all_layers_outputs_classes.append(outputs_class)
            all_layers_outputs_coords.append(outputs_coord)

        all_layers_outputs_classes = torch.stack(all_layers_outputs_classes)
        all_layers_outputs_coords = torch.stack(all_layers_outputs_coords)

        return all_layers_outputs_classes, all_layers_outputs_coords

    def loss(self, hidden_states: Tensor, references: List[Tensor],
             enc_outputs_class: Tensor, enc_outputs_coord: Tensor,
             batch_data_samples: SampleList) -> dict:
        """Perform forward propagation and loss calculation of the detection
        head on the queries of the upstream network.

        Args:
            hidden_states (Tensor): Hidden states output from each decoder
                layer, has shape (num_decoder_layers, num_queries, bs, dim).
            references (list[Tensor]): List of the reference from the decoder.
                The first reference is the `init_reference` (initial) and the
                other num_decoder_layers(6) references are `inter_references`
                (intermediate). The `init_reference` has shape (bs,
                num_queries, 4) when `as_two_stage` of the detector is `True`,
                otherwise (bs, num_queries, 2). Each `inter_reference` has
                shape (bs, num_queries, 4) when `with_box_refine` of the
                detector is `True`, otherwise (bs, num_queries, 2). The
                coordinates are arranged as (cx, cy) when the last dimension is
                2, and (cx, cy, w, h) when it is 4.
            enc_outputs_class (Tensor): The score of each point on encode
                feature map, has shape (bs, num_feat_points, cls_out_channels).
                Only when `as_two_stage` is `True` it would be passed in,
                otherwise it would be `None`.
            enc_outputs_coord (Tensor): The proposal generate from the encode
                feature map, has shape (bs, num_feat_points, 4) with the last
                dimension arranged as (cx, cy, w, h). Only when `as_two_stage`
                is `True` it would be passed in, otherwise it would be `None`.
            batch_data_samples (list[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            dict: A dictionary of loss components.
        """
        batch_gt_instances = []
        batch_img_metas = []
        for data_sample in batch_data_samples:
            batch_img_metas.append(data_sample.metainfo)
            batch_gt_instances.append(data_sample.gt_instances)

        outs = self(hidden_states, references)
        loss_inputs = outs + (enc_outputs_class, enc_outputs_coord,
                              batch_gt_instances, batch_img_metas)
        losses = self.loss_by_feat(*loss_inputs)
        return losses

    def loss_by_feat(
        self,
        all_layers_cls_scores: Tensor,
        all_layers_bbox_preds: Tensor,
        enc_cls_scores: Tensor,
        enc_bbox_preds: Tensor,
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        batch_gt_instances_ignore: OptInstanceList = None
    ) -> Dict[str, Tensor]:
        """Loss function.

        Args:
            all_layers_cls_scores (Tensor): Classification scores of all
                decoder layers, has shape (num_decoder_layers, bs, num_queries,
                cls_out_channels).
            all_layers_bbox_preds (Tensor): Regression outputs of all decoder
                layers. Each is a 4D-tensor with normalized coordinate format
                (cx, cy, w, h) and has shape (num_decoder_layers, bs,
                num_queries, 4) with the last dimension arranged as
                (cx, cy, w, h).
            enc_cls_scores (Tensor): The score of each point on encode
                feature map, has shape (bs, num_feat_points, cls_out_channels).
                Only when `as_two_stage` is `True` it would be passes in,
                otherwise, it would be `None`.
            enc_bbox_preds (Tensor): The proposal generate from the encode
                feature map, has shape (bs, num_feat_points, 4) with the last
                dimension arranged as (cx, cy, w, h). Only when `as_two_stage`
                is `True` it would be passed in, otherwise it would be `None`.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        loss_dict = super().loss_by_feat(all_layers_cls_scores,
                                         all_layers_bbox_preds,
                                         batch_gt_instances, batch_img_metas,
                                         batch_gt_instances_ignore)

        # loss of proposal generated from encode feature map.
        if enc_cls_scores is not None:
            proposal_gt_instances = copy.deepcopy(batch_gt_instances)
            for i in range(len(proposal_gt_instances)):
                proposal_gt_instances[i].labels = torch.zeros_like(
                    proposal_gt_instances[i].labels)
            enc_loss_cls, enc_losses_bbox, enc_losses_iou = \
                self.loss_by_feat_single(
                    enc_cls_scores, enc_bbox_preds,
                    batch_gt_instances=proposal_gt_instances,
                    batch_img_metas=batch_img_metas)
            loss_dict['enc_loss_cls'] = enc_loss_cls
            loss_dict['enc_loss_bbox'] = enc_losses_bbox
            loss_dict['enc_loss_iou'] = enc_losses_iou
        return loss_dict

    def predict(self,
                hidden_states: Tensor,
                references: List[Tensor],
                batch_data_samples: SampleList,
                rescale: bool = True) -> InstanceList:
        """Perform forward propagation and loss calculation of the detection
        head on the queries of the upstream network.

        Args:
            hidden_states (Tensor): Hidden states output from each decoder
                layer, has shape (num_decoder_layers, num_queries, bs, dim).
            references (list[Tensor]): List of the reference from the decoder.
                The first reference is the `init_reference` (initial) and the
                other num_decoder_layers(6) references are `inter_references`
                (intermediate). The `init_reference` has shape (bs,
                num_queries, 4) when `as_two_stage` of the detector is `True`,
                otherwise (bs, num_queries, 2). Each `inter_reference` has
                shape (bs, num_queries, 4) when `with_box_refine` of the
                detector is `True`, otherwise (bs, num_queries, 2). The
                coordinates are arranged as (cx, cy) when the last dimension is
                2, and (cx, cy, w, h) when it is 4.
            batch_data_samples (list[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
            rescale (bool, optional): If `True`, return boxes in original
                image space. Defaults to `True`.

        Returns:
            list[obj:`InstanceData`]: Detection results of each image
            after the post process.
        """
        batch_img_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]

        outs = self(hidden_states, references)

        predictions = self.predict_by_feat(
            *outs, batch_img_metas=batch_img_metas, rescale=rescale)
        return predictions

    def predict_by_feat(self,
                        all_layers_cls_scores: Tensor,
                        all_layers_bbox_preds: Tensor,
                        batch_img_metas: List[Dict],
                        rescale: bool = False) -> InstanceList:
        """Transform a batch of output features extracted from the head into
        bbox results.

        Args:
            all_layers_cls_scores (Tensor): Classification scores of all
                decoder layers, has shape (num_decoder_layers, bs, num_queries,
                cls_out_channels).
            all_layers_bbox_preds (Tensor): Regression outputs of all decoder
                layers. Each is a 4D-tensor with normalized coordinate format
                (cx, cy, w, h) and shape (num_decoder_layers, bs, num_queries,
                4) with the last dimension arranged as (cx, cy, w, h).
            batch_img_metas (list[dict]): Meta information of each image.
            rescale (bool, optional): If `True`, return boxes in original
                image space. Default `False`.

        Returns:
            list[obj:`InstanceData`]: Detection results of each image
            after the post process.
        """
        cls_scores = all_layers_cls_scores[-1]
        bbox_preds = all_layers_bbox_preds[-1]

        result_list = []
        for img_id in range(len(batch_img_metas)):
            cls_score = cls_scores[img_id]
            bbox_pred = bbox_preds[img_id]
            img_meta = batch_img_metas[img_id]
            results = self._predict_by_feat_single(cls_score, bbox_pred,
                                                   img_meta, rescale)
            result_list.append(results)
        return result_list