Spaces:
Runtime error
Runtime error
File size: 36,278 Bytes
3e06e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Tuple
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, Scale
from mmengine.model import bias_init_with_prob, normal_init
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures.bbox import bbox_overlaps
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
OptInstanceList, reduce_mean)
from ..task_modules.prior_generators import anchor_inside_flags
from ..utils import images_to_levels, multi_apply, unmap
from .anchor_head import AnchorHead
EPS = 1e-12
@MODELS.register_module()
class DDODHead(AnchorHead):
"""Detection Head of `DDOD <https://arxiv.org/abs/2107.02963>`_.
DDOD head decomposes conjunctions lying in most current one-stage
detectors via label assignment disentanglement, spatial feature
disentanglement, and pyramid supervision disentanglement.
Args:
num_classes (int): Number of categories excluding the
background category.
in_channels (int): Number of channels in the input feature map.
stacked_convs (int): The number of stacked Conv. Defaults to 4.
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
convolution layer. Defaults to None.
use_dcn (bool): Use dcn, Same as ATSS when False. Defaults to True.
norm_cfg (:obj:`ConfigDict` or dict): Normal config of ddod head.
Defaults to dict(type='GN', num_groups=32, requires_grad=True).
loss_iou (:obj:`ConfigDict` or dict): Config of IoU loss. Defaults to
dict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0).
"""
def __init__(self,
num_classes: int,
in_channels: int,
stacked_convs: int = 4,
conv_cfg: OptConfigType = None,
use_dcn: bool = True,
norm_cfg: ConfigType = dict(
type='GN', num_groups=32, requires_grad=True),
loss_iou: ConfigType = dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
**kwargs) -> None:
self.stacked_convs = stacked_convs
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.use_dcn = use_dcn
super().__init__(num_classes, in_channels, **kwargs)
if self.train_cfg:
self.cls_assigner = TASK_UTILS.build(self.train_cfg['assigner'])
self.reg_assigner = TASK_UTILS.build(
self.train_cfg['reg_assigner'])
self.loss_iou = MODELS.build(loss_iou)
def _init_layers(self) -> None:
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=dict(type='DCN', deform_groups=1)
if i == 0 and self.use_dcn else self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=dict(type='DCN', deform_groups=1)
if i == 0 and self.use_dcn else self.conv_cfg,
norm_cfg=self.norm_cfg))
self.atss_cls = nn.Conv2d(
self.feat_channels,
self.num_base_priors * self.cls_out_channels,
3,
padding=1)
self.atss_reg = nn.Conv2d(
self.feat_channels, self.num_base_priors * 4, 3, padding=1)
self.atss_iou = nn.Conv2d(
self.feat_channels, self.num_base_priors * 1, 3, padding=1)
self.scales = nn.ModuleList(
[Scale(1.0) for _ in self.prior_generator.strides])
# we use the global list in loss
self.cls_num_pos_samples_per_level = [
0. for _ in range(len(self.prior_generator.strides))
]
self.reg_num_pos_samples_per_level = [
0. for _ in range(len(self.prior_generator.strides))
]
def init_weights(self) -> None:
"""Initialize weights of the head."""
for m in self.cls_convs:
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
normal_init(m.conv, std=0.01)
normal_init(self.atss_reg, std=0.01)
normal_init(self.atss_iou, std=0.01)
bias_cls = bias_init_with_prob(0.01)
normal_init(self.atss_cls, std=0.01, bias=bias_cls)
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]:
"""Forward features from the upstream network.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: A tuple of classification scores, bbox predictions,
and iou predictions.
- cls_scores (list[Tensor]): Classification scores for all \
scale levels, each is a 4D-tensor, the channels number is \
num_base_priors * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for all \
scale levels, each is a 4D-tensor, the channels number is \
num_base_priors * 4.
- iou_preds (list[Tensor]): IoU scores for all scale levels, \
each is a 4D-tensor, the channels number is num_base_priors * 1.
"""
return multi_apply(self.forward_single, x, self.scales)
def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]:
"""Forward feature of a single scale level.
Args:
x (Tensor): Features of a single scale level.
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
the bbox prediction.
Returns:
tuple:
- cls_score (Tensor): Cls scores for a single scale level \
the channels number is num_base_priors * num_classes.
- bbox_pred (Tensor): Box energies / deltas for a single \
scale level, the channels number is num_base_priors * 4.
- iou_pred (Tensor): Iou for a single scale level, the \
channel number is (N, num_base_priors * 1, H, W).
"""
cls_feat = x
reg_feat = x
for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs:
reg_feat = reg_conv(reg_feat)
cls_score = self.atss_cls(cls_feat)
# we just follow atss, not apply exp in bbox_pred
bbox_pred = scale(self.atss_reg(reg_feat)).float()
iou_pred = self.atss_iou(reg_feat)
return cls_score, bbox_pred, iou_pred
def loss_cls_by_feat_single(self, cls_score: Tensor, labels: Tensor,
label_weights: Tensor,
reweight_factor: List[float],
avg_factor: float) -> Tuple[Tensor]:
"""Compute cls loss of a single scale level.
Args:
cls_score (Tensor): Box scores for each scale level
Has shape (N, num_base_priors * num_classes, H, W).
labels (Tensor): Labels of each anchors with shape
(N, num_total_anchors).
label_weights (Tensor): Label weights of each anchor with shape
(N, num_total_anchors)
reweight_factor (List[float]): Reweight factor for cls and reg
loss.
avg_factor (float): Average factor that is used to average
the loss. When using sampling method, avg_factor is usually
the sum of positive and negative priors. When using
`PseudoSampler`, `avg_factor` is usually equal to the number
of positive priors.
Returns:
Tuple[Tensor]: A tuple of loss components.
"""
cls_score = cls_score.permute(0, 2, 3, 1).reshape(
-1, self.cls_out_channels).contiguous()
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
loss_cls = self.loss_cls(
cls_score, labels, label_weights, avg_factor=avg_factor)
return reweight_factor * loss_cls,
def loss_reg_by_feat_single(self, anchors: Tensor, bbox_pred: Tensor,
iou_pred: Tensor, labels,
label_weights: Tensor, bbox_targets: Tensor,
bbox_weights: Tensor,
reweight_factor: List[float],
avg_factor: float) -> Tuple[Tensor, Tensor]:
"""Compute reg loss of a single scale level based on the features
extracted by the detection head.
Args:
anchors (Tensor): Box reference for each scale level with shape
(N, num_total_anchors, 4).
bbox_pred (Tensor): Box energies / deltas for each scale
level with shape (N, num_base_priors * 4, H, W).
iou_pred (Tensor): Iou for a single scale level, the
channel number is (N, num_base_priors * 1, H, W).
labels (Tensor): Labels of each anchors with shape
(N, num_total_anchors).
label_weights (Tensor): Label weights of each anchor with shape
(N, num_total_anchors)
bbox_targets (Tensor): BBox regression targets of each anchor
weight shape (N, num_total_anchors, 4).
bbox_weights (Tensor): BBox weights of all anchors in the
image with shape (N, 4)
reweight_factor (List[float]): Reweight factor for cls and reg
loss.
avg_factor (float): Average factor that is used to average
the loss. When using sampling method, avg_factor is usually
the sum of positive and negative priors. When using
`PseudoSampler`, `avg_factor` is usually equal to the number
of positive priors.
Returns:
Tuple[Tensor, Tensor]: A tuple of loss components.
"""
anchors = anchors.reshape(-1, 4)
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
iou_pred = iou_pred.permute(0, 2, 3, 1).reshape(-1, )
bbox_targets = bbox_targets.reshape(-1, 4)
bbox_weights = bbox_weights.reshape(-1, 4)
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
iou_targets = label_weights.new_zeros(labels.shape)
iou_weights = label_weights.new_zeros(labels.shape)
iou_weights[(bbox_weights.sum(axis=1) > 0).nonzero(
as_tuple=False)] = 1.
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = ((labels >= 0)
&
(labels < bg_class_ind)).nonzero(as_tuple=False).squeeze(1)
if len(pos_inds) > 0:
pos_bbox_targets = bbox_targets[pos_inds]
pos_bbox_pred = bbox_pred[pos_inds]
pos_anchors = anchors[pos_inds]
pos_decode_bbox_pred = self.bbox_coder.decode(
pos_anchors, pos_bbox_pred)
pos_decode_bbox_targets = self.bbox_coder.decode(
pos_anchors, pos_bbox_targets)
# regression loss
loss_bbox = self.loss_bbox(
pos_decode_bbox_pred,
pos_decode_bbox_targets,
avg_factor=avg_factor)
iou_targets[pos_inds] = bbox_overlaps(
pos_decode_bbox_pred.detach(),
pos_decode_bbox_targets,
is_aligned=True)
loss_iou = self.loss_iou(
iou_pred, iou_targets, iou_weights, avg_factor=avg_factor)
else:
loss_bbox = bbox_pred.sum() * 0
loss_iou = iou_pred.sum() * 0
return reweight_factor * loss_bbox, reweight_factor * loss_iou
def calc_reweight_factor(self, labels_list: List[Tensor]) -> List[float]:
"""Compute reweight_factor for regression and classification loss."""
# get pos samples for each level
bg_class_ind = self.num_classes
for ii, each_level_label in enumerate(labels_list):
pos_inds = ((each_level_label >= 0) &
(each_level_label < bg_class_ind)).nonzero(
as_tuple=False).squeeze(1)
self.cls_num_pos_samples_per_level[ii] += len(pos_inds)
# get reweight factor from 1 ~ 2 with bilinear interpolation
min_pos_samples = min(self.cls_num_pos_samples_per_level)
max_pos_samples = max(self.cls_num_pos_samples_per_level)
interval = 1. / (max_pos_samples - min_pos_samples + 1e-10)
reweight_factor_per_level = []
for pos_samples in self.cls_num_pos_samples_per_level:
factor = 2. - (pos_samples - min_pos_samples) * interval
reweight_factor_per_level.append(factor)
return reweight_factor_per_level
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
iou_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_base_priors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_base_priors * 4, H, W)
iou_preds (list[Tensor]): Score factor for all scale level,
each is a 4D-tensor, has shape (batch_size, 1, H, W).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
# calculate common vars for cls and reg assigners at once
targets_com = self.process_predictions_and_anchors(
anchor_list, valid_flag_list, cls_scores, bbox_preds,
batch_img_metas, batch_gt_instances_ignore)
(anchor_list, valid_flag_list, num_level_anchors_list, cls_score_list,
bbox_pred_list, batch_gt_instances_ignore) = targets_com
# classification branch assigner
cls_targets = self.get_cls_targets(
anchor_list,
valid_flag_list,
num_level_anchors_list,
cls_score_list,
bbox_pred_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
(cls_anchor_list, labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, avg_factor) = cls_targets
avg_factor = reduce_mean(
torch.tensor(avg_factor, dtype=torch.float, device=device)).item()
avg_factor = max(avg_factor, 1.0)
reweight_factor_per_level = self.calc_reweight_factor(labels_list)
cls_losses_cls, = multi_apply(
self.loss_cls_by_feat_single,
cls_scores,
labels_list,
label_weights_list,
reweight_factor_per_level,
avg_factor=avg_factor)
# regression branch assigner
reg_targets = self.get_reg_targets(
anchor_list,
valid_flag_list,
num_level_anchors_list,
cls_score_list,
bbox_pred_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
(reg_anchor_list, labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, avg_factor) = reg_targets
avg_factor = reduce_mean(
torch.tensor(avg_factor, dtype=torch.float, device=device)).item()
avg_factor = max(avg_factor, 1.0)
reweight_factor_per_level = self.calc_reweight_factor(labels_list)
reg_losses_bbox, reg_losses_iou = multi_apply(
self.loss_reg_by_feat_single,
reg_anchor_list,
bbox_preds,
iou_preds,
labels_list,
label_weights_list,
bbox_targets_list,
bbox_weights_list,
reweight_factor_per_level,
avg_factor=avg_factor)
return dict(
loss_cls=cls_losses_cls,
loss_bbox=reg_losses_bbox,
loss_iou=reg_losses_iou)
def process_predictions_and_anchors(
self,
anchor_list: List[List[Tensor]],
valid_flag_list: List[List[Tensor]],
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> tuple:
"""Compute common vars for regression and classification targets.
Args:
anchor_list (List[List[Tensor]]): anchors of each image.
valid_flag_list (List[List[Tensor]]): Valid flags of each image.
cls_scores (List[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Return:
tuple[Tensor]: A tuple of common loss vars.
"""
num_imgs = len(batch_img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
# anchor number of multi levels
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
num_level_anchors_list = [num_level_anchors] * num_imgs
anchor_list_ = []
valid_flag_list_ = []
# concat all level anchors and flags to a single tensor
for i in range(num_imgs):
assert len(anchor_list[i]) == len(valid_flag_list[i])
anchor_list_.append(torch.cat(anchor_list[i]))
valid_flag_list_.append(torch.cat(valid_flag_list[i]))
# compute targets for each image
if batch_gt_instances_ignore is None:
batch_gt_instances_ignore = [None for _ in range(num_imgs)]
num_levels = len(cls_scores)
cls_score_list = []
bbox_pred_list = []
mlvl_cls_score_list = [
cls_score.permute(0, 2, 3, 1).reshape(
num_imgs, -1, self.num_base_priors * self.cls_out_channels)
for cls_score in cls_scores
]
mlvl_bbox_pred_list = [
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.num_base_priors * 4)
for bbox_pred in bbox_preds
]
for i in range(num_imgs):
mlvl_cls_tensor_list = [
mlvl_cls_score_list[j][i] for j in range(num_levels)
]
mlvl_bbox_tensor_list = [
mlvl_bbox_pred_list[j][i] for j in range(num_levels)
]
cat_mlvl_cls_score = torch.cat(mlvl_cls_tensor_list, dim=0)
cat_mlvl_bbox_pred = torch.cat(mlvl_bbox_tensor_list, dim=0)
cls_score_list.append(cat_mlvl_cls_score)
bbox_pred_list.append(cat_mlvl_bbox_pred)
return (anchor_list_, valid_flag_list_, num_level_anchors_list,
cls_score_list, bbox_pred_list, batch_gt_instances_ignore)
def get_cls_targets(self,
anchor_list: List[Tensor],
valid_flag_list: List[Tensor],
num_level_anchors_list: List[int],
cls_score_list: List[Tensor],
bbox_pred_list: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None,
unmap_outputs: bool = True) -> tuple:
"""Get cls targets for DDOD head.
This method is almost the same as `AnchorHead.get_targets()`.
Besides returning the targets as the parent method does,
it also returns the anchors as the first element of the
returned tuple.
Args:
anchor_list (list[Tensor]): anchors of each image.
valid_flag_list (list[Tensor]): Valid flags of each image.
num_level_anchors_list (list[Tensor]): Number of anchors of each
scale level of all image.
cls_score_list (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes.
bbox_pred_list (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Return:
tuple[Tensor]: A tuple of cls targets components.
"""
(all_anchors, all_labels, all_label_weights, all_bbox_targets,
all_bbox_weights, pos_inds_list, neg_inds_list,
sampling_results_list) = multi_apply(
self._get_targets_single,
anchor_list,
valid_flag_list,
cls_score_list,
bbox_pred_list,
num_level_anchors_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore,
unmap_outputs=unmap_outputs,
is_cls_assigner=True)
# Get `avg_factor` of all images, which calculate in `SamplingResult`.
# When using sampling method, avg_factor is usually the sum of
# positive and negative priors. When using `PseudoSampler`,
# `avg_factor` is usually equal to the number of positive priors.
avg_factor = sum(
[results.avg_factor for results in sampling_results_list])
# split targets to a list w.r.t. multiple levels
anchors_list = images_to_levels(all_anchors, num_level_anchors_list[0])
labels_list = images_to_levels(all_labels, num_level_anchors_list[0])
label_weights_list = images_to_levels(all_label_weights,
num_level_anchors_list[0])
bbox_targets_list = images_to_levels(all_bbox_targets,
num_level_anchors_list[0])
bbox_weights_list = images_to_levels(all_bbox_weights,
num_level_anchors_list[0])
return (anchors_list, labels_list, label_weights_list,
bbox_targets_list, bbox_weights_list, avg_factor)
def get_reg_targets(self,
anchor_list: List[Tensor],
valid_flag_list: List[Tensor],
num_level_anchors_list: List[int],
cls_score_list: List[Tensor],
bbox_pred_list: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None,
unmap_outputs: bool = True) -> tuple:
"""Get reg targets for DDOD head.
This method is almost the same as `AnchorHead.get_targets()` when
is_cls_assigner is False. Besides returning the targets as the parent
method does, it also returns the anchors as the first element of the
returned tuple.
Args:
anchor_list (list[Tensor]): anchors of each image.
valid_flag_list (list[Tensor]): Valid flags of each image.
num_level_anchors_list (list[Tensor]): Number of anchors of each
scale level of all image.
cls_score_list (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes.
bbox_pred_list (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Return:
tuple[Tensor]: A tuple of reg targets components.
"""
(all_anchors, all_labels, all_label_weights, all_bbox_targets,
all_bbox_weights, pos_inds_list, neg_inds_list,
sampling_results_list) = multi_apply(
self._get_targets_single,
anchor_list,
valid_flag_list,
cls_score_list,
bbox_pred_list,
num_level_anchors_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore,
unmap_outputs=unmap_outputs,
is_cls_assigner=False)
# Get `avg_factor` of all images, which calculate in `SamplingResult`.
# When using sampling method, avg_factor is usually the sum of
# positive and negative priors. When using `PseudoSampler`,
# `avg_factor` is usually equal to the number of positive priors.
avg_factor = sum(
[results.avg_factor for results in sampling_results_list])
# split targets to a list w.r.t. multiple levels
anchors_list = images_to_levels(all_anchors, num_level_anchors_list[0])
labels_list = images_to_levels(all_labels, num_level_anchors_list[0])
label_weights_list = images_to_levels(all_label_weights,
num_level_anchors_list[0])
bbox_targets_list = images_to_levels(all_bbox_targets,
num_level_anchors_list[0])
bbox_weights_list = images_to_levels(all_bbox_weights,
num_level_anchors_list[0])
return (anchors_list, labels_list, label_weights_list,
bbox_targets_list, bbox_weights_list, avg_factor)
def _get_targets_single(self,
flat_anchors: Tensor,
valid_flags: Tensor,
cls_scores: Tensor,
bbox_preds: Tensor,
num_level_anchors: List[int],
gt_instances: InstanceData,
img_meta: dict,
gt_instances_ignore: Optional[InstanceData] = None,
unmap_outputs: bool = True,
is_cls_assigner: bool = True) -> tuple:
"""Compute regression, classification targets for anchors in a single
image.
Args:
flat_anchors (Tensor): Multi-level anchors of the image,
which are concatenated into a single tensor of shape
(num_base_priors, 4).
valid_flags (Tensor): Multi level valid flags of the image,
which are concatenated into a single tensor of
shape (num_base_priors,).
cls_scores (Tensor): Classification scores for all scale
levels of the image.
bbox_preds (Tensor): Box energies / deltas for all scale
levels of the image.
num_level_anchors (List[int]): Number of anchors of each
scale level.
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It usually includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for current image.
gt_instances_ignore (:obj:`InstanceData`, optional): Instances
to be ignored during training. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors. Defaults to True.
is_cls_assigner (bool): Classification or regression.
Defaults to True.
Returns:
tuple: N is the number of total anchors in the image.
- anchors (Tensor): all anchors in the image with shape (N, 4).
- labels (Tensor): Labels of all anchors in the image with \
shape (N, ).
- label_weights (Tensor): Label weights of all anchor in the \
image with shape (N, ).
- bbox_targets (Tensor): BBox targets of all anchors in the \
image with shape (N, 4).
- bbox_weights (Tensor): BBox weights of all anchors in the \
image with shape (N, 4)
- pos_inds (Tensor): Indices of positive anchor with shape \
(num_pos, ).
- neg_inds (Tensor): Indices of negative anchor with shape \
(num_neg, ).
- sampling_result (:obj:`SamplingResult`): Sampling results.
"""
inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
img_meta['img_shape'][:2],
self.train_cfg['allowed_border'])
if not inside_flags.any():
raise ValueError(
'There is no valid anchor inside the image boundary. Please '
'check the image size and anchor sizes, or set '
'``allowed_border`` to -1 to skip the condition.')
# assign gt and sample anchors
anchors = flat_anchors[inside_flags, :]
num_level_anchors_inside = self.get_num_level_anchors_inside(
num_level_anchors, inside_flags)
bbox_preds_valid = bbox_preds[inside_flags, :]
cls_scores_valid = cls_scores[inside_flags, :]
assigner = self.cls_assigner if is_cls_assigner else self.reg_assigner
# decode prediction out of assigner
bbox_preds_valid = self.bbox_coder.decode(anchors, bbox_preds_valid)
pred_instances = InstanceData(
priors=anchors, bboxes=bbox_preds_valid, scores=cls_scores_valid)
assign_result = assigner.assign(
pred_instances=pred_instances,
num_level_priors=num_level_anchors_inside,
gt_instances=gt_instances,
gt_instances_ignore=gt_instances_ignore)
sampling_result = self.sampler.sample(
assign_result=assign_result,
pred_instances=pred_instances,
gt_instances=gt_instances)
num_valid_anchors = anchors.shape[0]
bbox_targets = torch.zeros_like(anchors)
bbox_weights = torch.zeros_like(anchors)
labels = anchors.new_full((num_valid_anchors, ),
self.num_classes,
dtype=torch.long)
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
pos_bbox_targets = self.bbox_coder.encode(
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
bbox_targets[pos_inds, :] = pos_bbox_targets
bbox_weights[pos_inds, :] = 1.0
labels[pos_inds] = sampling_result.pos_gt_labels
if self.train_cfg['pos_weight'] <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg['pos_weight']
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
# map up to original set of anchors
if unmap_outputs:
num_total_anchors = flat_anchors.size(0)
anchors = unmap(anchors, num_total_anchors, inside_flags)
labels = unmap(
labels, num_total_anchors, inside_flags, fill=self.num_classes)
label_weights = unmap(label_weights, num_total_anchors,
inside_flags)
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)
return (anchors, labels, label_weights, bbox_targets, bbox_weights,
pos_inds, neg_inds, sampling_result)
def get_num_level_anchors_inside(self, num_level_anchors: List[int],
inside_flags: Tensor) -> List[int]:
"""Get the anchors of each scale level inside.
Args:
num_level_anchors (list[int]): Number of anchors of each
scale level.
inside_flags (Tensor): Multi level inside flags of the image,
which are concatenated into a single tensor of
shape (num_base_priors,).
Returns:
list[int]: Number of anchors of each scale level inside.
"""
split_inside_flags = torch.split(inside_flags, num_level_anchors)
num_level_anchors_inside = [
int(flags.sum()) for flags in split_inside_flags
]
return num_level_anchors_inside
|