File size: 27,032 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence, Tuple

import torch
import torch.nn as nn
from mmcv.cnn import Scale
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.structures.bbox import bbox2distance
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
                         OptInstanceList, reduce_mean)
from ..utils import multi_apply
from .anchor_free_head import AnchorFreeHead

INF = 1000000000
RangeType = Sequence[Tuple[int, int]]


def _transpose(tensor_list: List[Tensor],
               num_point_list: list) -> List[Tensor]:
    """This function is used to transpose image first tensors to level first
    ones."""
    for img_idx in range(len(tensor_list)):
        tensor_list[img_idx] = torch.split(
            tensor_list[img_idx], num_point_list, dim=0)

    tensors_level_first = []
    for targets_per_level in zip(*tensor_list):
        tensors_level_first.append(torch.cat(targets_per_level, dim=0))
    return tensors_level_first


@MODELS.register_module()
class CenterNetUpdateHead(AnchorFreeHead):
    """CenterNetUpdateHead is an improved version of CenterNet in CenterNet2.
    Paper link `<https://arxiv.org/abs/2103.07461>`_.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channel in the input feature map.
        regress_ranges (Sequence[Tuple[int, int]]): Regress range of multiple
            level points.
        hm_min_radius (int): Heatmap target minimum radius of cls branch.
            Defaults to 4.
        hm_min_overlap (float): Heatmap target minimum overlap of cls branch.
            Defaults to 0.8.
        more_pos_thresh (float): The filtering threshold when the cls branch
            adds more positive samples. Defaults to 0.2.
        more_pos_topk (int): The maximum number of additional positive samples
            added to each gt. Defaults to 9.
        soft_weight_on_reg (bool): Whether to use the soft target of the
            cls branch as the soft weight of the bbox branch.
            Defaults to False.
        loss_cls (:obj:`ConfigDict` or dict): Config of cls loss. Defaults to
            dict(type='GaussianFocalLoss', loss_weight=1.0)
        loss_bbox (:obj:`ConfigDict` or dict): Config of bbox loss. Defaults to
             dict(type='GIoULoss', loss_weight=2.0).
        norm_cfg (:obj:`ConfigDict` or dict, optional): dictionary to construct
            and config norm layer.  Defaults to
            ``norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)``.
        train_cfg (:obj:`ConfigDict` or dict, optional): Training config.
            Unused in CenterNet. Reserved for compatibility with
            SingleStageDetector.
        test_cfg (:obj:`ConfigDict` or dict, optional): Testing config
            of CenterNet.
    """

    def __init__(self,
                 num_classes: int,
                 in_channels: int,
                 regress_ranges: RangeType = ((0, 80), (64, 160), (128, 320),
                                              (256, 640), (512, INF)),
                 hm_min_radius: int = 4,
                 hm_min_overlap: float = 0.8,
                 more_pos_thresh: float = 0.2,
                 more_pos_topk: int = 9,
                 soft_weight_on_reg: bool = False,
                 loss_cls: ConfigType = dict(
                     type='GaussianFocalLoss',
                     pos_weight=0.25,
                     neg_weight=0.75,
                     loss_weight=1.0),
                 loss_bbox: ConfigType = dict(
                     type='GIoULoss', loss_weight=2.0),
                 norm_cfg: OptConfigType = dict(
                     type='GN', num_groups=32, requires_grad=True),
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 **kwargs) -> None:
        super().__init__(
            num_classes=num_classes,
            in_channels=in_channels,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            norm_cfg=norm_cfg,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            **kwargs)
        self.soft_weight_on_reg = soft_weight_on_reg
        self.hm_min_radius = hm_min_radius
        self.more_pos_thresh = more_pos_thresh
        self.more_pos_topk = more_pos_topk
        self.delta = (1 - hm_min_overlap) / (1 + hm_min_overlap)
        self.sigmoid_clamp = 0.0001

        # GaussianFocalLoss must be sigmoid mode
        self.use_sigmoid_cls = True
        self.cls_out_channels = num_classes

        self.regress_ranges = regress_ranges
        self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])

    def _init_predictor(self) -> None:
        """Initialize predictor layers of the head."""
        self.conv_cls = nn.Conv2d(
            self.feat_channels, self.num_classes, 3, padding=1)
        self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)

    def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor], List[Tensor]]:
        """Forward features from the upstream network.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple: A tuple of each level outputs.

            - cls_scores (list[Tensor]): Box scores for each scale level, \
            each is a 4D-tensor, the channel number is num_classes.
            - bbox_preds (list[Tensor]): Box energies / deltas for each \
            scale level, each is a 4D-tensor, the channel number is 4.
        """
        return multi_apply(self.forward_single, x, self.scales, self.strides)

    def forward_single(self, x: Tensor, scale: Scale,
                       stride: int) -> Tuple[Tensor, Tensor]:
        """Forward features of a single scale level.

        Args:
            x (Tensor): FPN feature maps of the specified stride.
            scale (:obj:`mmcv.cnn.Scale`): Learnable scale module to resize
                the bbox prediction.
            stride (int): The corresponding stride for feature maps.

        Returns:
            tuple: scores for each class, bbox predictions of
            input feature maps.
        """
        cls_score, bbox_pred, _, _ = super().forward_single(x)
        # scale the bbox_pred of different level
        # float to avoid overflow when enabling FP16
        bbox_pred = scale(bbox_pred).float()
        # bbox_pred needed for gradient computation has been modified
        # by F.relu(bbox_pred) when run with PyTorch 1.10. So replace
        # F.relu(bbox_pred) with bbox_pred.clamp(min=0)
        bbox_pred = bbox_pred.clamp(min=0)
        if not self.training:
            bbox_pred *= stride
        return cls_score, bbox_pred

    def loss_by_feat(
        self,
        cls_scores: List[Tensor],
        bbox_preds: List[Tensor],
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        batch_gt_instances_ignore: OptInstanceList = None
    ) -> Dict[str, Tensor]:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is num_classes.
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is 4.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        num_imgs = cls_scores[0].size(0)
        assert len(cls_scores) == len(bbox_preds)
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        all_level_points = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=bbox_preds[0].dtype,
            device=bbox_preds[0].device)

        # 1 flatten outputs
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_cls_scores = torch.cat(flatten_cls_scores)
        flatten_bbox_preds = torch.cat(flatten_bbox_preds)

        # repeat points to align with bbox_preds
        flatten_points = torch.cat(
            [points.repeat(num_imgs, 1) for points in all_level_points])

        assert (torch.isfinite(flatten_bbox_preds).all().item())

        # 2 calc reg and cls branch targets
        cls_targets, bbox_targets = self.get_targets(all_level_points,
                                                     batch_gt_instances)

        # 3 add more pos index for cls branch
        featmap_sizes = flatten_points.new_tensor(featmap_sizes)
        pos_inds, cls_labels = self.add_cls_pos_inds(flatten_points,
                                                     flatten_bbox_preds,
                                                     featmap_sizes,
                                                     batch_gt_instances)

        # 4 calc cls loss
        if pos_inds is None:
            # num_gts=0
            num_pos_cls = bbox_preds[0].new_tensor(0, dtype=torch.float)
        else:
            num_pos_cls = bbox_preds[0].new_tensor(
                len(pos_inds), dtype=torch.float)
        num_pos_cls = max(reduce_mean(num_pos_cls), 1.0)
        flatten_cls_scores = flatten_cls_scores.sigmoid().clamp(
            min=self.sigmoid_clamp, max=1 - self.sigmoid_clamp)
        cls_loss = self.loss_cls(
            flatten_cls_scores,
            cls_targets,
            pos_inds=pos_inds,
            pos_labels=cls_labels,
            avg_factor=num_pos_cls)

        # 5 calc reg loss
        pos_bbox_inds = torch.nonzero(
            bbox_targets.max(dim=1)[0] >= 0).squeeze(1)
        pos_bbox_preds = flatten_bbox_preds[pos_bbox_inds]
        pos_bbox_targets = bbox_targets[pos_bbox_inds]

        bbox_weight_map = cls_targets.max(dim=1)[0]
        bbox_weight_map = bbox_weight_map[pos_bbox_inds]
        bbox_weight_map = bbox_weight_map if self.soft_weight_on_reg \
            else torch.ones_like(bbox_weight_map)
        num_pos_bbox = max(reduce_mean(bbox_weight_map.sum()), 1.0)

        if len(pos_bbox_inds) > 0:
            pos_points = flatten_points[pos_bbox_inds]
            pos_decoded_bbox_preds = self.bbox_coder.decode(
                pos_points, pos_bbox_preds)
            pos_decoded_target_preds = self.bbox_coder.decode(
                pos_points, pos_bbox_targets)
            bbox_loss = self.loss_bbox(
                pos_decoded_bbox_preds,
                pos_decoded_target_preds,
                weight=bbox_weight_map,
                avg_factor=num_pos_bbox)
        else:
            bbox_loss = flatten_bbox_preds.sum() * 0

        return dict(loss_cls=cls_loss, loss_bbox=bbox_loss)

    def get_targets(
        self,
        points: List[Tensor],
        batch_gt_instances: InstanceList,
    ) -> Tuple[Tensor, Tensor]:
        """Compute classification and bbox targets for points in multiple
        images.

        Args:
            points (list[Tensor]): Points of each fpn level, each has shape
                (num_points, 2).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.

        Returns:
            tuple: Targets of each level.

            - concat_lvl_labels (Tensor): Labels of all level and batch.
            - concat_lvl_bbox_targets (Tensor): BBox targets of all \
            level and batch.
        """
        assert len(points) == len(self.regress_ranges)

        num_levels = len(points)
        # the number of points per img, per lvl
        num_points = [center.size(0) for center in points]

        # expand regress ranges to align with points
        expanded_regress_ranges = [
            points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
                points[i]) for i in range(num_levels)
        ]
        # concat all levels points and regress ranges
        concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
        concat_points = torch.cat(points, dim=0)
        concat_strides = torch.cat([
            concat_points.new_ones(num_points[i]) * self.strides[i]
            for i in range(num_levels)
        ])

        # get labels and bbox_targets of each image
        cls_targets_list, bbox_targets_list = multi_apply(
            self._get_targets_single,
            batch_gt_instances,
            points=concat_points,
            regress_ranges=concat_regress_ranges,
            strides=concat_strides)

        bbox_targets_list = _transpose(bbox_targets_list, num_points)
        cls_targets_list = _transpose(cls_targets_list, num_points)
        concat_lvl_bbox_targets = torch.cat(bbox_targets_list, 0)
        concat_lvl_cls_targets = torch.cat(cls_targets_list, dim=0)
        return concat_lvl_cls_targets, concat_lvl_bbox_targets

    def _get_targets_single(self, gt_instances: InstanceData, points: Tensor,
                            regress_ranges: Tensor,
                            strides: Tensor) -> Tuple[Tensor, Tensor]:
        """Compute classification and bbox targets for a single image."""
        num_points = points.size(0)
        num_gts = len(gt_instances)
        gt_bboxes = gt_instances.bboxes
        gt_labels = gt_instances.labels

        if num_gts == 0:
            return gt_labels.new_full((num_points,
                                       self.num_classes),
                                      self.num_classes), \
                   gt_bboxes.new_full((num_points, 4), -1)

        # Calculate the regression tblr target corresponding to all points
        points = points[:, None].expand(num_points, num_gts, 2)
        gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
        strides = strides[:, None, None].expand(num_points, num_gts, 2)

        bbox_target = bbox2distance(points, gt_bboxes)  # M x N x 4

        # condition1: inside a gt bbox
        inside_gt_bbox_mask = bbox_target.min(dim=2)[0] > 0  # M x N

        # condition2: Calculate the nearest points from
        # the upper, lower, left and right ranges from
        # the center of the gt bbox
        centers = ((gt_bboxes[..., [0, 1]] + gt_bboxes[..., [2, 3]]) / 2)
        centers_discret = ((centers / strides).int() * strides).float() + \
            strides / 2

        centers_discret_dist = points - centers_discret
        dist_x = centers_discret_dist[..., 0].abs()
        dist_y = centers_discret_dist[..., 1].abs()
        inside_gt_center3x3_mask = (dist_x <= strides[..., 0]) & \
                                   (dist_y <= strides[..., 0])

        # condition3: limit the regression range for each location
        bbox_target_wh = bbox_target[..., :2] + bbox_target[..., 2:]
        crit = (bbox_target_wh**2).sum(dim=2)**0.5 / 2
        inside_fpn_level_mask = (crit >= regress_ranges[:, [0]]) & \
                                (crit <= regress_ranges[:, [1]])
        bbox_target_mask = inside_gt_bbox_mask & \
            inside_gt_center3x3_mask & \
            inside_fpn_level_mask

        # Calculate the distance weight map
        gt_center_peak_mask = ((centers_discret_dist**2).sum(dim=2) == 0)
        weighted_dist = ((points - centers)**2).sum(dim=2)  # M x N
        weighted_dist[gt_center_peak_mask] = 0

        areas = (gt_bboxes[..., 2] - gt_bboxes[..., 0]) * (
            gt_bboxes[..., 3] - gt_bboxes[..., 1])
        radius = self.delta**2 * 2 * areas
        radius = torch.clamp(radius, min=self.hm_min_radius**2)
        weighted_dist = weighted_dist / radius

        # Calculate bbox_target
        bbox_weighted_dist = weighted_dist.clone()
        bbox_weighted_dist[bbox_target_mask == 0] = INF * 1.0
        min_dist, min_inds = bbox_weighted_dist.min(dim=1)
        bbox_target = bbox_target[range(len(bbox_target)),
                                  min_inds]  # M x N x 4 --> M x 4
        bbox_target[min_dist == INF] = -INF

        # Convert to feature map scale
        bbox_target /= strides[:, 0, :].repeat(1, 2)

        # Calculate cls_target
        cls_target = self._create_heatmaps_from_dist(weighted_dist, gt_labels)

        return cls_target, bbox_target

    @torch.no_grad()
    def add_cls_pos_inds(
        self, flatten_points: Tensor, flatten_bbox_preds: Tensor,
        featmap_sizes: Tensor, batch_gt_instances: InstanceList
    ) -> Tuple[Optional[Tensor], Optional[Tensor]]:
        """Provide additional adaptive positive samples to the classification
        branch.

        Args:
            flatten_points (Tensor): The point after flatten, including
                batch image and all levels. The shape is (N, 2).
            flatten_bbox_preds (Tensor): The bbox predicts after flatten,
                including batch image and all levels. The shape is (N, 4).
            featmap_sizes (Tensor): Feature map size of all layers.
                The shape is (5, 2).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.

        Returns:
           tuple:

           - pos_inds (Tensor): Adaptively selected positive sample index.
           - cls_labels (Tensor): Corresponding positive class label.
        """
        outputs = self._get_center3x3_region_index_targets(
            batch_gt_instances, featmap_sizes)
        cls_labels, fpn_level_masks, center3x3_inds, \
            center3x3_bbox_targets, center3x3_masks = outputs

        num_gts, total_level, K = cls_labels.shape[0], len(
            self.strides), center3x3_masks.shape[-1]

        if num_gts == 0:
            return None, None

        # The out-of-bounds index is forcibly set to 0
        # to prevent loss calculation errors
        center3x3_inds[center3x3_masks == 0] = 0
        reg_pred_center3x3 = flatten_bbox_preds[center3x3_inds]
        center3x3_points = flatten_points[center3x3_inds].view(-1, 2)

        center3x3_bbox_targets_expand = center3x3_bbox_targets.view(
            -1, 4).clamp(min=0)

        pos_decoded_bbox_preds = self.bbox_coder.decode(
            center3x3_points, reg_pred_center3x3.view(-1, 4))
        pos_decoded_target_preds = self.bbox_coder.decode(
            center3x3_points, center3x3_bbox_targets_expand)
        center3x3_bbox_loss = self.loss_bbox(
            pos_decoded_bbox_preds,
            pos_decoded_target_preds,
            None,
            reduction_override='none').view(num_gts, total_level,
                                            K) / self.loss_bbox.loss_weight

        # Invalid index Loss set to infinity
        center3x3_bbox_loss[center3x3_masks == 0] = INF

        # 4 is the center point of the sampled 9 points, the center point
        # of gt bbox after discretization.
        # The center point of gt bbox after discretization
        # must be a positive sample, so we force its loss to be set to 0.
        center3x3_bbox_loss.view(-1, K)[fpn_level_masks.view(-1), 4] = 0
        center3x3_bbox_loss = center3x3_bbox_loss.view(num_gts, -1)

        loss_thr = torch.kthvalue(
            center3x3_bbox_loss, self.more_pos_topk, dim=1)[0]

        loss_thr[loss_thr > self.more_pos_thresh] = self.more_pos_thresh
        new_pos = center3x3_bbox_loss < loss_thr.view(num_gts, 1)
        pos_inds = center3x3_inds.view(num_gts, -1)[new_pos]
        cls_labels = cls_labels.view(num_gts,
                                     1).expand(num_gts,
                                               total_level * K)[new_pos]
        return pos_inds, cls_labels

    def _create_heatmaps_from_dist(self, weighted_dist: Tensor,
                                   cls_labels: Tensor) -> Tensor:
        """Generate heatmaps of classification branch based on weighted
        distance map."""
        heatmaps = weighted_dist.new_zeros(
            (weighted_dist.shape[0], self.num_classes))
        for c in range(self.num_classes):
            inds = (cls_labels == c)  # N
            if inds.int().sum() == 0:
                continue
            heatmaps[:, c] = torch.exp(-weighted_dist[:, inds].min(dim=1)[0])
            zeros = heatmaps[:, c] < 1e-4
            heatmaps[zeros, c] = 0
        return heatmaps

    def _get_center3x3_region_index_targets(self,
                                            bacth_gt_instances: InstanceList,
                                            shapes_per_level: Tensor) -> tuple:
        """Get the center (and the 3x3 region near center) locations and target
        of each objects."""
        cls_labels = []
        inside_fpn_level_masks = []
        center3x3_inds = []
        center3x3_masks = []
        center3x3_bbox_targets = []

        total_levels = len(self.strides)
        batch = len(bacth_gt_instances)

        shapes_per_level = shapes_per_level.long()
        area_per_level = (shapes_per_level[:, 0] * shapes_per_level[:, 1])

        # Select a total of 9 positions of 3x3 in the center of the gt bbox
        # as candidate positive samples
        K = 9
        dx = shapes_per_level.new_tensor([-1, 0, 1, -1, 0, 1, -1, 0,
                                          1]).view(1, 1, K)
        dy = shapes_per_level.new_tensor([-1, -1, -1, 0, 0, 0, 1, 1,
                                          1]).view(1, 1, K)

        regress_ranges = shapes_per_level.new_tensor(self.regress_ranges).view(
            len(self.regress_ranges), 2)  # L x 2
        strides = shapes_per_level.new_tensor(self.strides)

        start_coord_pre_level = []
        _start = 0
        for level in range(total_levels):
            start_coord_pre_level.append(_start)
            _start = _start + batch * area_per_level[level]
        start_coord_pre_level = shapes_per_level.new_tensor(
            start_coord_pre_level).view(1, total_levels, 1)
        area_per_level = area_per_level.view(1, total_levels, 1)

        for im_i in range(batch):
            gt_instance = bacth_gt_instances[im_i]
            gt_bboxes = gt_instance.bboxes
            gt_labels = gt_instance.labels
            num_gts = gt_bboxes.shape[0]
            if num_gts == 0:
                continue

            cls_labels.append(gt_labels)

            gt_bboxes = gt_bboxes[:, None].expand(num_gts, total_levels, 4)
            expanded_strides = strides[None, :,
                                       None].expand(num_gts, total_levels, 2)
            expanded_regress_ranges = regress_ranges[None].expand(
                num_gts, total_levels, 2)
            expanded_shapes_per_level = shapes_per_level[None].expand(
                num_gts, total_levels, 2)

            # calc reg_target
            centers = ((gt_bboxes[..., [0, 1]] + gt_bboxes[..., [2, 3]]) / 2)
            centers_inds = (centers / expanded_strides).long()
            centers_discret = centers_inds * expanded_strides \
                + expanded_strides // 2

            bbox_target = bbox2distance(centers_discret,
                                        gt_bboxes)  # M x N x 4

            # calc inside_fpn_level_mask
            bbox_target_wh = bbox_target[..., :2] + bbox_target[..., 2:]
            crit = (bbox_target_wh**2).sum(dim=2)**0.5 / 2
            inside_fpn_level_mask = \
                (crit >= expanded_regress_ranges[..., 0]) & \
                (crit <= expanded_regress_ranges[..., 1])

            inside_gt_bbox_mask = bbox_target.min(dim=2)[0] >= 0
            inside_fpn_level_mask = inside_gt_bbox_mask & inside_fpn_level_mask
            inside_fpn_level_masks.append(inside_fpn_level_mask)

            # calc center3x3_ind and mask
            expand_ws = expanded_shapes_per_level[..., 1:2].expand(
                num_gts, total_levels, K)
            expand_hs = expanded_shapes_per_level[..., 0:1].expand(
                num_gts, total_levels, K)
            centers_inds_x = centers_inds[..., 0:1]
            centers_inds_y = centers_inds[..., 1:2]

            center3x3_idx = start_coord_pre_level + \
                im_i * area_per_level + \
                (centers_inds_y + dy) * expand_ws + \
                (centers_inds_x + dx)
            center3x3_mask = \
                ((centers_inds_y + dy) < expand_hs) & \
                ((centers_inds_y + dy) >= 0) & \
                ((centers_inds_x + dx) < expand_ws) & \
                ((centers_inds_x + dx) >= 0)

            # recalc center3x3 region reg target
            bbox_target = bbox_target / expanded_strides.repeat(1, 1, 2)
            center3x3_bbox_target = bbox_target[..., None, :].expand(
                num_gts, total_levels, K, 4).clone()
            center3x3_bbox_target[..., 0] += dx
            center3x3_bbox_target[..., 1] += dy
            center3x3_bbox_target[..., 2] -= dx
            center3x3_bbox_target[..., 3] -= dy
            # update center3x3_mask
            center3x3_mask = center3x3_mask & (
                center3x3_bbox_target.min(dim=3)[0] >= 0)  # n x L x K

            center3x3_inds.append(center3x3_idx)
            center3x3_masks.append(center3x3_mask)
            center3x3_bbox_targets.append(center3x3_bbox_target)

        if len(inside_fpn_level_masks) > 0:
            cls_labels = torch.cat(cls_labels, dim=0)
            inside_fpn_level_masks = torch.cat(inside_fpn_level_masks, dim=0)
            center3x3_inds = torch.cat(center3x3_inds, dim=0).long()
            center3x3_bbox_targets = torch.cat(center3x3_bbox_targets, dim=0)
            center3x3_masks = torch.cat(center3x3_masks, dim=0)
        else:
            cls_labels = shapes_per_level.new_zeros(0).long()
            inside_fpn_level_masks = shapes_per_level.new_zeros(
                (0, total_levels)).bool()
            center3x3_inds = shapes_per_level.new_zeros(
                (0, total_levels, K)).long()
            center3x3_bbox_targets = shapes_per_level.new_zeros(
                (0, total_levels, K, 4)).float()
            center3x3_masks = shapes_per_level.new_zeros(
                (0, total_levels, K)).bool()
        return cls_labels, inside_fpn_level_masks, center3x3_inds, \
            center3x3_bbox_targets, center3x3_masks