File size: 19,870 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple

import torch
import torch.nn as nn
from mmcv.ops import batched_nms
from mmengine.config import ConfigDict
from mmengine.model import bias_init_with_prob, normal_init
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
                         OptInstanceList, OptMultiConfig)
from ..utils import (gaussian_radius, gen_gaussian_target, get_local_maximum,
                     get_topk_from_heatmap, multi_apply,
                     transpose_and_gather_feat)
from .base_dense_head import BaseDenseHead


@MODELS.register_module()
class CenterNetHead(BaseDenseHead):
    """Objects as Points Head. CenterHead use center_point to indicate object's
    position. Paper link <https://arxiv.org/abs/1904.07850>

    Args:
        in_channels (int): Number of channel in the input feature map.
        feat_channels (int): Number of channel in the intermediate feature map.
        num_classes (int): Number of categories excluding the background
            category.
        loss_center_heatmap (:obj:`ConfigDict` or dict): Config of center
            heatmap loss. Defaults to
            dict(type='GaussianFocalLoss', loss_weight=1.0)
        loss_wh (:obj:`ConfigDict` or dict): Config of wh loss. Defaults to
             dict(type='L1Loss', loss_weight=0.1).
        loss_offset (:obj:`ConfigDict` or dict): Config of offset loss.
            Defaults to dict(type='L1Loss', loss_weight=1.0).
        train_cfg (:obj:`ConfigDict` or dict, optional): Training config.
            Useless in CenterNet, but we keep this variable for
            SingleStageDetector.
        test_cfg (:obj:`ConfigDict` or dict, optional): Testing config
            of CenterNet.
        init_cfg (:obj:`ConfigDict` or dict or list[dict] or
            list[:obj:`ConfigDict`], optional): Initialization
            config dict.
    """

    def __init__(self,
                 in_channels: int,
                 feat_channels: int,
                 num_classes: int,
                 loss_center_heatmap: ConfigType = dict(
                     type='GaussianFocalLoss', loss_weight=1.0),
                 loss_wh: ConfigType = dict(type='L1Loss', loss_weight=0.1),
                 loss_offset: ConfigType = dict(
                     type='L1Loss', loss_weight=1.0),
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 init_cfg: OptMultiConfig = None) -> None:
        super().__init__(init_cfg=init_cfg)
        self.num_classes = num_classes
        self.heatmap_head = self._build_head(in_channels, feat_channels,
                                             num_classes)
        self.wh_head = self._build_head(in_channels, feat_channels, 2)
        self.offset_head = self._build_head(in_channels, feat_channels, 2)

        self.loss_center_heatmap = MODELS.build(loss_center_heatmap)
        self.loss_wh = MODELS.build(loss_wh)
        self.loss_offset = MODELS.build(loss_offset)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.fp16_enabled = False

    def _build_head(self, in_channels: int, feat_channels: int,
                    out_channels: int) -> nn.Sequential:
        """Build head for each branch."""
        layer = nn.Sequential(
            nn.Conv2d(in_channels, feat_channels, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(feat_channels, out_channels, kernel_size=1))
        return layer

    def init_weights(self) -> None:
        """Initialize weights of the head."""
        bias_init = bias_init_with_prob(0.1)
        self.heatmap_head[-1].bias.data.fill_(bias_init)
        for head in [self.wh_head, self.offset_head]:
            for m in head.modules():
                if isinstance(m, nn.Conv2d):
                    normal_init(m, std=0.001)

    def forward(self, x: Tuple[Tensor, ...]) -> Tuple[List[Tensor]]:
        """Forward features. Notice CenterNet head does not use FPN.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            center_heatmap_preds (list[Tensor]): center predict heatmaps for
                all levels, the channels number is num_classes.
            wh_preds (list[Tensor]): wh predicts for all levels, the channels
                number is 2.
            offset_preds (list[Tensor]): offset predicts for all levels, the
               channels number is 2.
        """
        return multi_apply(self.forward_single, x)

    def forward_single(self, x: Tensor) -> Tuple[Tensor, ...]:
        """Forward feature of a single level.

        Args:
            x (Tensor): Feature of a single level.

        Returns:
            center_heatmap_pred (Tensor): center predict heatmaps, the
               channels number is num_classes.
            wh_pred (Tensor): wh predicts, the channels number is 2.
            offset_pred (Tensor): offset predicts, the channels number is 2.
        """
        center_heatmap_pred = self.heatmap_head(x).sigmoid()
        wh_pred = self.wh_head(x)
        offset_pred = self.offset_head(x)
        return center_heatmap_pred, wh_pred, offset_pred

    def loss_by_feat(
            self,
            center_heatmap_preds: List[Tensor],
            wh_preds: List[Tensor],
            offset_preds: List[Tensor],
            batch_gt_instances: InstanceList,
            batch_img_metas: List[dict],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        """Compute losses of the head.

        Args:
            center_heatmap_preds (list[Tensor]): center predict heatmaps for
               all levels with shape (B, num_classes, H, W).
            wh_preds (list[Tensor]): wh predicts for all levels with
               shape (B, 2, H, W).
            offset_preds (list[Tensor]): offset predicts for all levels
               with shape (B, 2, H, W).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: which has components below:
                - loss_center_heatmap (Tensor): loss of center heatmap.
                - loss_wh (Tensor): loss of hw heatmap
                - loss_offset (Tensor): loss of offset heatmap.
        """
        assert len(center_heatmap_preds) == len(wh_preds) == len(
            offset_preds) == 1
        center_heatmap_pred = center_heatmap_preds[0]
        wh_pred = wh_preds[0]
        offset_pred = offset_preds[0]

        gt_bboxes = [
            gt_instances.bboxes for gt_instances in batch_gt_instances
        ]
        gt_labels = [
            gt_instances.labels for gt_instances in batch_gt_instances
        ]
        img_shape = batch_img_metas[0]['batch_input_shape']
        target_result, avg_factor = self.get_targets(gt_bboxes, gt_labels,
                                                     center_heatmap_pred.shape,
                                                     img_shape)

        center_heatmap_target = target_result['center_heatmap_target']
        wh_target = target_result['wh_target']
        offset_target = target_result['offset_target']
        wh_offset_target_weight = target_result['wh_offset_target_weight']

        # Since the channel of wh_target and offset_target is 2, the avg_factor
        # of loss_center_heatmap is always 1/2 of loss_wh and loss_offset.
        loss_center_heatmap = self.loss_center_heatmap(
            center_heatmap_pred, center_heatmap_target, avg_factor=avg_factor)
        loss_wh = self.loss_wh(
            wh_pred,
            wh_target,
            wh_offset_target_weight,
            avg_factor=avg_factor * 2)
        loss_offset = self.loss_offset(
            offset_pred,
            offset_target,
            wh_offset_target_weight,
            avg_factor=avg_factor * 2)
        return dict(
            loss_center_heatmap=loss_center_heatmap,
            loss_wh=loss_wh,
            loss_offset=loss_offset)

    def get_targets(self, gt_bboxes: List[Tensor], gt_labels: List[Tensor],
                    feat_shape: tuple, img_shape: tuple) -> Tuple[dict, int]:
        """Compute regression and classification targets in multiple images.

        Args:
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box.
            feat_shape (tuple): feature map shape with value [B, _, H, W]
            img_shape (tuple): image shape.

        Returns:
            tuple[dict, float]: The float value is mean avg_factor, the dict
            has components below:
               - center_heatmap_target (Tensor): targets of center heatmap, \
                   shape (B, num_classes, H, W).
               - wh_target (Tensor): targets of wh predict, shape \
                   (B, 2, H, W).
               - offset_target (Tensor): targets of offset predict, shape \
                   (B, 2, H, W).
               - wh_offset_target_weight (Tensor): weights of wh and offset \
                   predict, shape (B, 2, H, W).
        """
        img_h, img_w = img_shape[:2]
        bs, _, feat_h, feat_w = feat_shape

        width_ratio = float(feat_w / img_w)
        height_ratio = float(feat_h / img_h)

        center_heatmap_target = gt_bboxes[-1].new_zeros(
            [bs, self.num_classes, feat_h, feat_w])
        wh_target = gt_bboxes[-1].new_zeros([bs, 2, feat_h, feat_w])
        offset_target = gt_bboxes[-1].new_zeros([bs, 2, feat_h, feat_w])
        wh_offset_target_weight = gt_bboxes[-1].new_zeros(
            [bs, 2, feat_h, feat_w])

        for batch_id in range(bs):
            gt_bbox = gt_bboxes[batch_id]
            gt_label = gt_labels[batch_id]
            center_x = (gt_bbox[:, [0]] + gt_bbox[:, [2]]) * width_ratio / 2
            center_y = (gt_bbox[:, [1]] + gt_bbox[:, [3]]) * height_ratio / 2
            gt_centers = torch.cat((center_x, center_y), dim=1)

            for j, ct in enumerate(gt_centers):
                ctx_int, cty_int = ct.int()
                ctx, cty = ct
                scale_box_h = (gt_bbox[j][3] - gt_bbox[j][1]) * height_ratio
                scale_box_w = (gt_bbox[j][2] - gt_bbox[j][0]) * width_ratio
                radius = gaussian_radius([scale_box_h, scale_box_w],
                                         min_overlap=0.3)
                radius = max(0, int(radius))
                ind = gt_label[j]
                gen_gaussian_target(center_heatmap_target[batch_id, ind],
                                    [ctx_int, cty_int], radius)

                wh_target[batch_id, 0, cty_int, ctx_int] = scale_box_w
                wh_target[batch_id, 1, cty_int, ctx_int] = scale_box_h

                offset_target[batch_id, 0, cty_int, ctx_int] = ctx - ctx_int
                offset_target[batch_id, 1, cty_int, ctx_int] = cty - cty_int

                wh_offset_target_weight[batch_id, :, cty_int, ctx_int] = 1

        avg_factor = max(1, center_heatmap_target.eq(1).sum())
        target_result = dict(
            center_heatmap_target=center_heatmap_target,
            wh_target=wh_target,
            offset_target=offset_target,
            wh_offset_target_weight=wh_offset_target_weight)
        return target_result, avg_factor

    def predict_by_feat(self,
                        center_heatmap_preds: List[Tensor],
                        wh_preds: List[Tensor],
                        offset_preds: List[Tensor],
                        batch_img_metas: Optional[List[dict]] = None,
                        rescale: bool = True,
                        with_nms: bool = False) -> InstanceList:
        """Transform network output for a batch into bbox predictions.

        Args:
            center_heatmap_preds (list[Tensor]): Center predict heatmaps for
                all levels with shape (B, num_classes, H, W).
            wh_preds (list[Tensor]): WH predicts for all levels with
                shape (B, 2, H, W).
            offset_preds (list[Tensor]): Offset predicts for all levels
                with shape (B, 2, H, W).
            batch_img_metas (list[dict], optional): Batch image meta info.
                Defaults to None.
            rescale (bool): If True, return boxes in original image space.
                Defaults to True.
            with_nms (bool): If True, do nms before return boxes.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Instance segmentation
            results of each image after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        assert len(center_heatmap_preds) == len(wh_preds) == len(
            offset_preds) == 1
        result_list = []
        for img_id in range(len(batch_img_metas)):
            result_list.append(
                self._predict_by_feat_single(
                    center_heatmap_preds[0][img_id:img_id + 1, ...],
                    wh_preds[0][img_id:img_id + 1, ...],
                    offset_preds[0][img_id:img_id + 1, ...],
                    batch_img_metas[img_id],
                    rescale=rescale,
                    with_nms=with_nms))
        return result_list

    def _predict_by_feat_single(self,
                                center_heatmap_pred: Tensor,
                                wh_pred: Tensor,
                                offset_pred: Tensor,
                                img_meta: dict,
                                rescale: bool = True,
                                with_nms: bool = False) -> InstanceData:
        """Transform outputs of a single image into bbox results.

        Args:
            center_heatmap_pred (Tensor): Center heatmap for current level with
                shape (1, num_classes, H, W).
            wh_pred (Tensor): WH heatmap for current level with shape
                (1, num_classes, H, W).
            offset_pred (Tensor): Offset for current level with shape
                (1, corner_offset_channels, H, W).
            img_meta (dict): Meta information of current image, e.g.,
                image size, scaling factor, etc.
            rescale (bool): If True, return boxes in original image space.
                Defaults to True.
            with_nms (bool): If True, do nms before return boxes.
                Defaults to False.

        Returns:
            :obj:`InstanceData`: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        batch_det_bboxes, batch_labels = self._decode_heatmap(
            center_heatmap_pred,
            wh_pred,
            offset_pred,
            img_meta['batch_input_shape'],
            k=self.test_cfg.topk,
            kernel=self.test_cfg.local_maximum_kernel)

        det_bboxes = batch_det_bboxes.view([-1, 5])
        det_labels = batch_labels.view(-1)

        batch_border = det_bboxes.new_tensor(img_meta['border'])[...,
                                                                 [2, 0, 2, 0]]
        det_bboxes[..., :4] -= batch_border

        if rescale and 'scale_factor' in img_meta:
            det_bboxes[..., :4] /= det_bboxes.new_tensor(
                img_meta['scale_factor']).repeat((1, 2))

        if with_nms:
            det_bboxes, det_labels = self._bboxes_nms(det_bboxes, det_labels,
                                                      self.test_cfg)
        results = InstanceData()
        results.bboxes = det_bboxes[..., :4]
        results.scores = det_bboxes[..., 4]
        results.labels = det_labels
        return results

    def _decode_heatmap(self,
                        center_heatmap_pred: Tensor,
                        wh_pred: Tensor,
                        offset_pred: Tensor,
                        img_shape: tuple,
                        k: int = 100,
                        kernel: int = 3) -> Tuple[Tensor, Tensor]:
        """Transform outputs into detections raw bbox prediction.

        Args:
            center_heatmap_pred (Tensor): center predict heatmap,
               shape (B, num_classes, H, W).
            wh_pred (Tensor): wh predict, shape (B, 2, H, W).
            offset_pred (Tensor): offset predict, shape (B, 2, H, W).
            img_shape (tuple): image shape in hw format.
            k (int): Get top k center keypoints from heatmap. Defaults to 100.
            kernel (int): Max pooling kernel for extract local maximum pixels.
               Defaults to 3.

        Returns:
            tuple[Tensor]: Decoded output of CenterNetHead, containing
               the following Tensors:

              - batch_bboxes (Tensor): Coords of each box with shape (B, k, 5)
              - batch_topk_labels (Tensor): Categories of each box with \
                  shape (B, k)
        """
        height, width = center_heatmap_pred.shape[2:]
        inp_h, inp_w = img_shape

        center_heatmap_pred = get_local_maximum(
            center_heatmap_pred, kernel=kernel)

        *batch_dets, topk_ys, topk_xs = get_topk_from_heatmap(
            center_heatmap_pred, k=k)
        batch_scores, batch_index, batch_topk_labels = batch_dets

        wh = transpose_and_gather_feat(wh_pred, batch_index)
        offset = transpose_and_gather_feat(offset_pred, batch_index)
        topk_xs = topk_xs + offset[..., 0]
        topk_ys = topk_ys + offset[..., 1]
        tl_x = (topk_xs - wh[..., 0] / 2) * (inp_w / width)
        tl_y = (topk_ys - wh[..., 1] / 2) * (inp_h / height)
        br_x = (topk_xs + wh[..., 0] / 2) * (inp_w / width)
        br_y = (topk_ys + wh[..., 1] / 2) * (inp_h / height)

        batch_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=2)
        batch_bboxes = torch.cat((batch_bboxes, batch_scores[..., None]),
                                 dim=-1)
        return batch_bboxes, batch_topk_labels

    def _bboxes_nms(self, bboxes: Tensor, labels: Tensor,
                    cfg: ConfigDict) -> Tuple[Tensor, Tensor]:
        """bboxes nms."""
        if labels.numel() > 0:
            max_num = cfg.max_per_img
            bboxes, keep = batched_nms(bboxes[:, :4], bboxes[:,
                                                             -1].contiguous(),
                                       labels, cfg.nms)
            if max_num > 0:
                bboxes = bboxes[:max_num]
                labels = labels[keep][:max_num]

        return bboxes, labels