Spaces:
Runtime error
Runtime error
File size: 19,870 Bytes
3e06e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from mmcv.ops import batched_nms
from mmengine.config import ConfigDict
from mmengine.model import bias_init_with_prob, normal_init
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
OptInstanceList, OptMultiConfig)
from ..utils import (gaussian_radius, gen_gaussian_target, get_local_maximum,
get_topk_from_heatmap, multi_apply,
transpose_and_gather_feat)
from .base_dense_head import BaseDenseHead
@MODELS.register_module()
class CenterNetHead(BaseDenseHead):
"""Objects as Points Head. CenterHead use center_point to indicate object's
position. Paper link <https://arxiv.org/abs/1904.07850>
Args:
in_channels (int): Number of channel in the input feature map.
feat_channels (int): Number of channel in the intermediate feature map.
num_classes (int): Number of categories excluding the background
category.
loss_center_heatmap (:obj:`ConfigDict` or dict): Config of center
heatmap loss. Defaults to
dict(type='GaussianFocalLoss', loss_weight=1.0)
loss_wh (:obj:`ConfigDict` or dict): Config of wh loss. Defaults to
dict(type='L1Loss', loss_weight=0.1).
loss_offset (:obj:`ConfigDict` or dict): Config of offset loss.
Defaults to dict(type='L1Loss', loss_weight=1.0).
train_cfg (:obj:`ConfigDict` or dict, optional): Training config.
Useless in CenterNet, but we keep this variable for
SingleStageDetector.
test_cfg (:obj:`ConfigDict` or dict, optional): Testing config
of CenterNet.
init_cfg (:obj:`ConfigDict` or dict or list[dict] or
list[:obj:`ConfigDict`], optional): Initialization
config dict.
"""
def __init__(self,
in_channels: int,
feat_channels: int,
num_classes: int,
loss_center_heatmap: ConfigType = dict(
type='GaussianFocalLoss', loss_weight=1.0),
loss_wh: ConfigType = dict(type='L1Loss', loss_weight=0.1),
loss_offset: ConfigType = dict(
type='L1Loss', loss_weight=1.0),
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
init_cfg: OptMultiConfig = None) -> None:
super().__init__(init_cfg=init_cfg)
self.num_classes = num_classes
self.heatmap_head = self._build_head(in_channels, feat_channels,
num_classes)
self.wh_head = self._build_head(in_channels, feat_channels, 2)
self.offset_head = self._build_head(in_channels, feat_channels, 2)
self.loss_center_heatmap = MODELS.build(loss_center_heatmap)
self.loss_wh = MODELS.build(loss_wh)
self.loss_offset = MODELS.build(loss_offset)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
self.fp16_enabled = False
def _build_head(self, in_channels: int, feat_channels: int,
out_channels: int) -> nn.Sequential:
"""Build head for each branch."""
layer = nn.Sequential(
nn.Conv2d(in_channels, feat_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(feat_channels, out_channels, kernel_size=1))
return layer
def init_weights(self) -> None:
"""Initialize weights of the head."""
bias_init = bias_init_with_prob(0.1)
self.heatmap_head[-1].bias.data.fill_(bias_init)
for head in [self.wh_head, self.offset_head]:
for m in head.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.001)
def forward(self, x: Tuple[Tensor, ...]) -> Tuple[List[Tensor]]:
"""Forward features. Notice CenterNet head does not use FPN.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
center_heatmap_preds (list[Tensor]): center predict heatmaps for
all levels, the channels number is num_classes.
wh_preds (list[Tensor]): wh predicts for all levels, the channels
number is 2.
offset_preds (list[Tensor]): offset predicts for all levels, the
channels number is 2.
"""
return multi_apply(self.forward_single, x)
def forward_single(self, x: Tensor) -> Tuple[Tensor, ...]:
"""Forward feature of a single level.
Args:
x (Tensor): Feature of a single level.
Returns:
center_heatmap_pred (Tensor): center predict heatmaps, the
channels number is num_classes.
wh_pred (Tensor): wh predicts, the channels number is 2.
offset_pred (Tensor): offset predicts, the channels number is 2.
"""
center_heatmap_pred = self.heatmap_head(x).sigmoid()
wh_pred = self.wh_head(x)
offset_pred = self.offset_head(x)
return center_heatmap_pred, wh_pred, offset_pred
def loss_by_feat(
self,
center_heatmap_preds: List[Tensor],
wh_preds: List[Tensor],
offset_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Compute losses of the head.
Args:
center_heatmap_preds (list[Tensor]): center predict heatmaps for
all levels with shape (B, num_classes, H, W).
wh_preds (list[Tensor]): wh predicts for all levels with
shape (B, 2, H, W).
offset_preds (list[Tensor]): offset predicts for all levels
with shape (B, 2, H, W).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: which has components below:
- loss_center_heatmap (Tensor): loss of center heatmap.
- loss_wh (Tensor): loss of hw heatmap
- loss_offset (Tensor): loss of offset heatmap.
"""
assert len(center_heatmap_preds) == len(wh_preds) == len(
offset_preds) == 1
center_heatmap_pred = center_heatmap_preds[0]
wh_pred = wh_preds[0]
offset_pred = offset_preds[0]
gt_bboxes = [
gt_instances.bboxes for gt_instances in batch_gt_instances
]
gt_labels = [
gt_instances.labels for gt_instances in batch_gt_instances
]
img_shape = batch_img_metas[0]['batch_input_shape']
target_result, avg_factor = self.get_targets(gt_bboxes, gt_labels,
center_heatmap_pred.shape,
img_shape)
center_heatmap_target = target_result['center_heatmap_target']
wh_target = target_result['wh_target']
offset_target = target_result['offset_target']
wh_offset_target_weight = target_result['wh_offset_target_weight']
# Since the channel of wh_target and offset_target is 2, the avg_factor
# of loss_center_heatmap is always 1/2 of loss_wh and loss_offset.
loss_center_heatmap = self.loss_center_heatmap(
center_heatmap_pred, center_heatmap_target, avg_factor=avg_factor)
loss_wh = self.loss_wh(
wh_pred,
wh_target,
wh_offset_target_weight,
avg_factor=avg_factor * 2)
loss_offset = self.loss_offset(
offset_pred,
offset_target,
wh_offset_target_weight,
avg_factor=avg_factor * 2)
return dict(
loss_center_heatmap=loss_center_heatmap,
loss_wh=loss_wh,
loss_offset=loss_offset)
def get_targets(self, gt_bboxes: List[Tensor], gt_labels: List[Tensor],
feat_shape: tuple, img_shape: tuple) -> Tuple[dict, int]:
"""Compute regression and classification targets in multiple images.
Args:
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box.
feat_shape (tuple): feature map shape with value [B, _, H, W]
img_shape (tuple): image shape.
Returns:
tuple[dict, float]: The float value is mean avg_factor, the dict
has components below:
- center_heatmap_target (Tensor): targets of center heatmap, \
shape (B, num_classes, H, W).
- wh_target (Tensor): targets of wh predict, shape \
(B, 2, H, W).
- offset_target (Tensor): targets of offset predict, shape \
(B, 2, H, W).
- wh_offset_target_weight (Tensor): weights of wh and offset \
predict, shape (B, 2, H, W).
"""
img_h, img_w = img_shape[:2]
bs, _, feat_h, feat_w = feat_shape
width_ratio = float(feat_w / img_w)
height_ratio = float(feat_h / img_h)
center_heatmap_target = gt_bboxes[-1].new_zeros(
[bs, self.num_classes, feat_h, feat_w])
wh_target = gt_bboxes[-1].new_zeros([bs, 2, feat_h, feat_w])
offset_target = gt_bboxes[-1].new_zeros([bs, 2, feat_h, feat_w])
wh_offset_target_weight = gt_bboxes[-1].new_zeros(
[bs, 2, feat_h, feat_w])
for batch_id in range(bs):
gt_bbox = gt_bboxes[batch_id]
gt_label = gt_labels[batch_id]
center_x = (gt_bbox[:, [0]] + gt_bbox[:, [2]]) * width_ratio / 2
center_y = (gt_bbox[:, [1]] + gt_bbox[:, [3]]) * height_ratio / 2
gt_centers = torch.cat((center_x, center_y), dim=1)
for j, ct in enumerate(gt_centers):
ctx_int, cty_int = ct.int()
ctx, cty = ct
scale_box_h = (gt_bbox[j][3] - gt_bbox[j][1]) * height_ratio
scale_box_w = (gt_bbox[j][2] - gt_bbox[j][0]) * width_ratio
radius = gaussian_radius([scale_box_h, scale_box_w],
min_overlap=0.3)
radius = max(0, int(radius))
ind = gt_label[j]
gen_gaussian_target(center_heatmap_target[batch_id, ind],
[ctx_int, cty_int], radius)
wh_target[batch_id, 0, cty_int, ctx_int] = scale_box_w
wh_target[batch_id, 1, cty_int, ctx_int] = scale_box_h
offset_target[batch_id, 0, cty_int, ctx_int] = ctx - ctx_int
offset_target[batch_id, 1, cty_int, ctx_int] = cty - cty_int
wh_offset_target_weight[batch_id, :, cty_int, ctx_int] = 1
avg_factor = max(1, center_heatmap_target.eq(1).sum())
target_result = dict(
center_heatmap_target=center_heatmap_target,
wh_target=wh_target,
offset_target=offset_target,
wh_offset_target_weight=wh_offset_target_weight)
return target_result, avg_factor
def predict_by_feat(self,
center_heatmap_preds: List[Tensor],
wh_preds: List[Tensor],
offset_preds: List[Tensor],
batch_img_metas: Optional[List[dict]] = None,
rescale: bool = True,
with_nms: bool = False) -> InstanceList:
"""Transform network output for a batch into bbox predictions.
Args:
center_heatmap_preds (list[Tensor]): Center predict heatmaps for
all levels with shape (B, num_classes, H, W).
wh_preds (list[Tensor]): WH predicts for all levels with
shape (B, 2, H, W).
offset_preds (list[Tensor]): Offset predicts for all levels
with shape (B, 2, H, W).
batch_img_metas (list[dict], optional): Batch image meta info.
Defaults to None.
rescale (bool): If True, return boxes in original image space.
Defaults to True.
with_nms (bool): If True, do nms before return boxes.
Defaults to False.
Returns:
list[:obj:`InstanceData`]: Instance segmentation
results of each image after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
assert len(center_heatmap_preds) == len(wh_preds) == len(
offset_preds) == 1
result_list = []
for img_id in range(len(batch_img_metas)):
result_list.append(
self._predict_by_feat_single(
center_heatmap_preds[0][img_id:img_id + 1, ...],
wh_preds[0][img_id:img_id + 1, ...],
offset_preds[0][img_id:img_id + 1, ...],
batch_img_metas[img_id],
rescale=rescale,
with_nms=with_nms))
return result_list
def _predict_by_feat_single(self,
center_heatmap_pred: Tensor,
wh_pred: Tensor,
offset_pred: Tensor,
img_meta: dict,
rescale: bool = True,
with_nms: bool = False) -> InstanceData:
"""Transform outputs of a single image into bbox results.
Args:
center_heatmap_pred (Tensor): Center heatmap for current level with
shape (1, num_classes, H, W).
wh_pred (Tensor): WH heatmap for current level with shape
(1, num_classes, H, W).
offset_pred (Tensor): Offset for current level with shape
(1, corner_offset_channels, H, W).
img_meta (dict): Meta information of current image, e.g.,
image size, scaling factor, etc.
rescale (bool): If True, return boxes in original image space.
Defaults to True.
with_nms (bool): If True, do nms before return boxes.
Defaults to False.
Returns:
:obj:`InstanceData`: Detection results of each image
after the post process.
Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
"""
batch_det_bboxes, batch_labels = self._decode_heatmap(
center_heatmap_pred,
wh_pred,
offset_pred,
img_meta['batch_input_shape'],
k=self.test_cfg.topk,
kernel=self.test_cfg.local_maximum_kernel)
det_bboxes = batch_det_bboxes.view([-1, 5])
det_labels = batch_labels.view(-1)
batch_border = det_bboxes.new_tensor(img_meta['border'])[...,
[2, 0, 2, 0]]
det_bboxes[..., :4] -= batch_border
if rescale and 'scale_factor' in img_meta:
det_bboxes[..., :4] /= det_bboxes.new_tensor(
img_meta['scale_factor']).repeat((1, 2))
if with_nms:
det_bboxes, det_labels = self._bboxes_nms(det_bboxes, det_labels,
self.test_cfg)
results = InstanceData()
results.bboxes = det_bboxes[..., :4]
results.scores = det_bboxes[..., 4]
results.labels = det_labels
return results
def _decode_heatmap(self,
center_heatmap_pred: Tensor,
wh_pred: Tensor,
offset_pred: Tensor,
img_shape: tuple,
k: int = 100,
kernel: int = 3) -> Tuple[Tensor, Tensor]:
"""Transform outputs into detections raw bbox prediction.
Args:
center_heatmap_pred (Tensor): center predict heatmap,
shape (B, num_classes, H, W).
wh_pred (Tensor): wh predict, shape (B, 2, H, W).
offset_pred (Tensor): offset predict, shape (B, 2, H, W).
img_shape (tuple): image shape in hw format.
k (int): Get top k center keypoints from heatmap. Defaults to 100.
kernel (int): Max pooling kernel for extract local maximum pixels.
Defaults to 3.
Returns:
tuple[Tensor]: Decoded output of CenterNetHead, containing
the following Tensors:
- batch_bboxes (Tensor): Coords of each box with shape (B, k, 5)
- batch_topk_labels (Tensor): Categories of each box with \
shape (B, k)
"""
height, width = center_heatmap_pred.shape[2:]
inp_h, inp_w = img_shape
center_heatmap_pred = get_local_maximum(
center_heatmap_pred, kernel=kernel)
*batch_dets, topk_ys, topk_xs = get_topk_from_heatmap(
center_heatmap_pred, k=k)
batch_scores, batch_index, batch_topk_labels = batch_dets
wh = transpose_and_gather_feat(wh_pred, batch_index)
offset = transpose_and_gather_feat(offset_pred, batch_index)
topk_xs = topk_xs + offset[..., 0]
topk_ys = topk_ys + offset[..., 1]
tl_x = (topk_xs - wh[..., 0] / 2) * (inp_w / width)
tl_y = (topk_ys - wh[..., 1] / 2) * (inp_h / height)
br_x = (topk_xs + wh[..., 0] / 2) * (inp_w / width)
br_y = (topk_ys + wh[..., 1] / 2) * (inp_h / height)
batch_bboxes = torch.stack([tl_x, tl_y, br_x, br_y], dim=2)
batch_bboxes = torch.cat((batch_bboxes, batch_scores[..., None]),
dim=-1)
return batch_bboxes, batch_topk_labels
def _bboxes_nms(self, bboxes: Tensor, labels: Tensor,
cfg: ConfigDict) -> Tuple[Tensor, Tensor]:
"""bboxes nms."""
if labels.numel() > 0:
max_num = cfg.max_per_img
bboxes, keep = batched_nms(bboxes[:, :4], bboxes[:,
-1].contiguous(),
labels, cfg.nms)
if max_num > 0:
bboxes = bboxes[:max_num]
labels = labels[keep][:max_num]
return bboxes, labels
|