File size: 7,744 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule

from mmdet.registry import MODELS
from mmdet.utils import ConfigType, OptMultiConfig
from ..layers import ResLayer
from .resnet import BasicBlock


class HourglassModule(BaseModule):
    """Hourglass Module for HourglassNet backbone.

    Generate module recursively and use BasicBlock as the base unit.

    Args:
        depth (int): Depth of current HourglassModule.
        stage_channels (list[int]): Feature channels of sub-modules in current
            and follow-up HourglassModule.
        stage_blocks (list[int]): Number of sub-modules stacked in current and
            follow-up HourglassModule.
        norm_cfg (ConfigType): Dictionary to construct and config norm layer.
            Defaults to `dict(type='BN', requires_grad=True)`
        upsample_cfg (ConfigType): Config dict for interpolate layer.
            Defaults to `dict(mode='nearest')`
       init_cfg (dict or ConfigDict, optional): the config to control the
           initialization.
    """

    def __init__(self,
                 depth: int,
                 stage_channels: List[int],
                 stage_blocks: List[int],
                 norm_cfg: ConfigType = dict(type='BN', requires_grad=True),
                 upsample_cfg: ConfigType = dict(mode='nearest'),
                 init_cfg: OptMultiConfig = None) -> None:
        super().__init__(init_cfg)

        self.depth = depth

        cur_block = stage_blocks[0]
        next_block = stage_blocks[1]

        cur_channel = stage_channels[0]
        next_channel = stage_channels[1]

        self.up1 = ResLayer(
            BasicBlock, cur_channel, cur_channel, cur_block, norm_cfg=norm_cfg)

        self.low1 = ResLayer(
            BasicBlock,
            cur_channel,
            next_channel,
            cur_block,
            stride=2,
            norm_cfg=norm_cfg)

        if self.depth > 1:
            self.low2 = HourglassModule(depth - 1, stage_channels[1:],
                                        stage_blocks[1:])
        else:
            self.low2 = ResLayer(
                BasicBlock,
                next_channel,
                next_channel,
                next_block,
                norm_cfg=norm_cfg)

        self.low3 = ResLayer(
            BasicBlock,
            next_channel,
            cur_channel,
            cur_block,
            norm_cfg=norm_cfg,
            downsample_first=False)

        self.up2 = F.interpolate
        self.upsample_cfg = upsample_cfg

    def forward(self, x: torch.Tensor) -> nn.Module:
        """Forward function."""
        up1 = self.up1(x)
        low1 = self.low1(x)
        low2 = self.low2(low1)
        low3 = self.low3(low2)
        # Fixing `scale factor` (e.g. 2) is common for upsampling, but
        # in some cases the spatial size is mismatched and error will arise.
        if 'scale_factor' in self.upsample_cfg:
            up2 = self.up2(low3, **self.upsample_cfg)
        else:
            shape = up1.shape[2:]
            up2 = self.up2(low3, size=shape, **self.upsample_cfg)
        return up1 + up2


@MODELS.register_module()
class HourglassNet(BaseModule):
    """HourglassNet backbone.

    Stacked Hourglass Networks for Human Pose Estimation.
    More details can be found in the `paper
    <https://arxiv.org/abs/1603.06937>`_ .

    Args:
        downsample_times (int): Downsample times in a HourglassModule.
        num_stacks (int): Number of HourglassModule modules stacked,
            1 for Hourglass-52, 2 for Hourglass-104.
        stage_channels (Sequence[int]): Feature channel of each sub-module in a
            HourglassModule.
        stage_blocks (Sequence[int]): Number of sub-modules stacked in a
            HourglassModule.
        feat_channel (int): Feature channel of conv after a HourglassModule.
        norm_cfg (norm_cfg): Dictionary to construct and config norm layer.
       init_cfg (dict or ConfigDict, optional): the config to control the
           initialization.

    Example:
        >>> from mmdet.models import HourglassNet
        >>> import torch
        >>> self = HourglassNet()
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 511, 511)
        >>> level_outputs = self.forward(inputs)
        >>> for level_output in level_outputs:
        ...     print(tuple(level_output.shape))
        (1, 256, 128, 128)
        (1, 256, 128, 128)
    """

    def __init__(self,
                 downsample_times: int = 5,
                 num_stacks: int = 2,
                 stage_channels: Sequence = (256, 256, 384, 384, 384, 512),
                 stage_blocks: Sequence = (2, 2, 2, 2, 2, 4),
                 feat_channel: int = 256,
                 norm_cfg: ConfigType = dict(type='BN', requires_grad=True),
                 init_cfg: OptMultiConfig = None) -> None:
        assert init_cfg is None, 'To prevent abnormal initialization ' \
                                 'behavior, init_cfg is not allowed to be set'
        super().__init__(init_cfg)

        self.num_stacks = num_stacks
        assert self.num_stacks >= 1
        assert len(stage_channels) == len(stage_blocks)
        assert len(stage_channels) > downsample_times

        cur_channel = stage_channels[0]

        self.stem = nn.Sequential(
            ConvModule(
                3, cur_channel // 2, 7, padding=3, stride=2,
                norm_cfg=norm_cfg),
            ResLayer(
                BasicBlock,
                cur_channel // 2,
                cur_channel,
                1,
                stride=2,
                norm_cfg=norm_cfg))

        self.hourglass_modules = nn.ModuleList([
            HourglassModule(downsample_times, stage_channels, stage_blocks)
            for _ in range(num_stacks)
        ])

        self.inters = ResLayer(
            BasicBlock,
            cur_channel,
            cur_channel,
            num_stacks - 1,
            norm_cfg=norm_cfg)

        self.conv1x1s = nn.ModuleList([
            ConvModule(
                cur_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None)
            for _ in range(num_stacks - 1)
        ])

        self.out_convs = nn.ModuleList([
            ConvModule(
                cur_channel, feat_channel, 3, padding=1, norm_cfg=norm_cfg)
            for _ in range(num_stacks)
        ])

        self.remap_convs = nn.ModuleList([
            ConvModule(
                feat_channel, cur_channel, 1, norm_cfg=norm_cfg, act_cfg=None)
            for _ in range(num_stacks - 1)
        ])

        self.relu = nn.ReLU(inplace=True)

    def init_weights(self) -> None:
        """Init module weights."""
        # Training Centripetal Model needs to reset parameters for Conv2d
        super().init_weights()
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                m.reset_parameters()

    def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
        """Forward function."""
        inter_feat = self.stem(x)
        out_feats = []

        for ind in range(self.num_stacks):
            single_hourglass = self.hourglass_modules[ind]
            out_conv = self.out_convs[ind]

            hourglass_feat = single_hourglass(inter_feat)
            out_feat = out_conv(hourglass_feat)
            out_feats.append(out_feat)

            if ind < self.num_stacks - 1:
                inter_feat = self.conv1x1s[ind](
                    inter_feat) + self.remap_convs[ind](
                        out_feat)
                inter_feat = self.inters[ind](self.relu(inter_feat))

        return out_feats