File size: 7,132 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, Iterator, Optional, Union

import numpy as np
import torch
from mmengine.dataset import BaseDataset
from mmengine.dist import get_dist_info, sync_random_seed
from torch.utils.data import Sampler

from mmdet.registry import DATA_SAMPLERS


@DATA_SAMPLERS.register_module()
class ClassAwareSampler(Sampler):
    r"""Sampler that restricts data loading to the label of the dataset.

    A class-aware sampling strategy to effectively tackle the
    non-uniform class distribution. The length of the training data is
    consistent with source data. Simple improvements based on `Relay
    Backpropagation for Effective Learning of Deep Convolutional
    Neural Networks <https://arxiv.org/abs/1512.05830>`_

    The implementation logic is referred to
    https://github.com/Sense-X/TSD/blob/master/mmdet/datasets/samplers/distributed_classaware_sampler.py

    Args:
        dataset: Dataset used for sampling.
        seed (int, optional): random seed used to shuffle the sampler.
            This number should be identical across all
            processes in the distributed group. Defaults to None.
        num_sample_class (int): The number of samples taken from each
            per-label list. Defaults to 1.
    """

    def __init__(self,
                 dataset: BaseDataset,
                 seed: Optional[int] = None,
                 num_sample_class: int = 1) -> None:
        rank, world_size = get_dist_info()
        self.rank = rank
        self.world_size = world_size

        self.dataset = dataset
        self.epoch = 0
        # Must be the same across all workers. If None, will use a
        # random seed shared among workers
        # (require synchronization among all workers)
        if seed is None:
            seed = sync_random_seed()
        self.seed = seed

        # The number of samples taken from each per-label list
        assert num_sample_class > 0 and isinstance(num_sample_class, int)
        self.num_sample_class = num_sample_class
        # Get per-label image list from dataset
        self.cat_dict = self.get_cat2imgs()

        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / world_size))
        self.total_size = self.num_samples * self.world_size

        # get number of images containing each category
        self.num_cat_imgs = [len(x) for x in self.cat_dict.values()]
        # filter labels without images
        self.valid_cat_inds = [
            i for i, length in enumerate(self.num_cat_imgs) if length != 0
        ]
        self.num_classes = len(self.valid_cat_inds)

    def get_cat2imgs(self) -> Dict[int, list]:
        """Get a dict with class as key and img_ids as values.

        Returns:
            dict[int, list]: A dict of per-label image list,
            the item of the dict indicates a label index,
            corresponds to the image index that contains the label.
        """
        classes = self.dataset.metainfo.get('classes', None)
        if classes is None:
            raise ValueError('dataset metainfo must contain `classes`')
        # sort the label index
        cat2imgs = {i: [] for i in range(len(classes))}
        for i in range(len(self.dataset)):
            cat_ids = set(self.dataset.get_cat_ids(i))
            for cat in cat_ids:
                cat2imgs[cat].append(i)
        return cat2imgs

    def __iter__(self) -> Iterator[int]:
        # deterministically shuffle based on epoch
        g = torch.Generator()
        g.manual_seed(self.epoch + self.seed)

        # initialize label list
        label_iter_list = RandomCycleIter(self.valid_cat_inds, generator=g)
        # initialize each per-label image list
        data_iter_dict = dict()
        for i in self.valid_cat_inds:
            data_iter_dict[i] = RandomCycleIter(self.cat_dict[i], generator=g)

        def gen_cat_img_inds(cls_list, data_dict, num_sample_cls):
            """Traverse the categories and extract `num_sample_cls` image
            indexes of the corresponding categories one by one."""
            id_indices = []
            for _ in range(len(cls_list)):
                cls_idx = next(cls_list)
                for _ in range(num_sample_cls):
                    id = next(data_dict[cls_idx])
                    id_indices.append(id)
            return id_indices

        # deterministically shuffle based on epoch
        num_bins = int(
            math.ceil(self.total_size * 1.0 / self.num_classes /
                      self.num_sample_class))
        indices = []
        for i in range(num_bins):
            indices += gen_cat_img_inds(label_iter_list, data_iter_dict,
                                        self.num_sample_class)

        # fix extra samples to make it evenly divisible
        if len(indices) >= self.total_size:
            indices = indices[:self.total_size]
        else:
            indices += indices[:(self.total_size - len(indices))]
        assert len(indices) == self.total_size

        # subsample
        offset = self.num_samples * self.rank
        indices = indices[offset:offset + self.num_samples]
        assert len(indices) == self.num_samples

        return iter(indices)

    def __len__(self) -> int:
        """The number of samples in this rank."""
        return self.num_samples

    def set_epoch(self, epoch: int) -> None:
        """Sets the epoch for this sampler.

        When :attr:`shuffle=True`, this ensures all replicas use a different
        random ordering for each epoch. Otherwise, the next iteration of this
        sampler will yield the same ordering.

        Args:
            epoch (int): Epoch number.
        """
        self.epoch = epoch


class RandomCycleIter:
    """Shuffle the list and do it again after the list have traversed.

    The implementation logic is referred to
    https://github.com/wutong16/DistributionBalancedLoss/blob/master/mllt/datasets/loader/sampler.py

    Example:
        >>> label_list = [0, 1, 2, 4, 5]
        >>> g = torch.Generator()
        >>> g.manual_seed(0)
        >>> label_iter_list = RandomCycleIter(label_list, generator=g)
        >>> index = next(label_iter_list)
    Args:
        data (list or ndarray): The data that needs to be shuffled.
        generator: An torch.Generator object, which is used in setting the seed
            for generating random numbers.
    """  # noqa: W605

    def __init__(self,
                 data: Union[list, np.ndarray],
                 generator: torch.Generator = None) -> None:
        self.data = data
        self.length = len(data)
        self.index = torch.randperm(self.length, generator=generator).numpy()
        self.i = 0
        self.generator = generator

    def __iter__(self) -> Iterator:
        return self

    def __len__(self) -> int:
        return len(self.data)

    def __next__(self):
        if self.i == self.length:
            self.index = torch.randperm(
                self.length, generator=self.generator).numpy()
            self.i = 0
        idx = self.data[self.index[self.i]]
        self.i += 1
        return idx