Spaces:
Runtime error
Runtime error
File size: 20,079 Bytes
3e06e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
# Copyright (c) OpenMMLab. All rights reserved.
import csv
import os.path as osp
from collections import defaultdict
from typing import Dict, List, Optional
import numpy as np
from mmengine.fileio import get_local_path, load
from mmengine.utils import is_abs
from mmdet.registry import DATASETS
from .base_det_dataset import BaseDetDataset
@DATASETS.register_module()
class OpenImagesDataset(BaseDetDataset):
"""Open Images dataset for detection.
Args:
ann_file (str): Annotation file path.
label_file (str): File path of the label description file that
maps the classes names in MID format to their short
descriptions.
meta_file (str): File path to get image metas.
hierarchy_file (str): The file path of the class hierarchy.
image_level_ann_file (str): Human-verified image level annotation,
which is used in evaluation.
backend_args (dict, optional): Arguments to instantiate the
corresponding backend. Defaults to None.
"""
METAINFO: dict = dict(dataset_type='oid_v6')
def __init__(self,
label_file: str,
meta_file: str,
hierarchy_file: str,
image_level_ann_file: Optional[str] = None,
**kwargs) -> None:
self.label_file = label_file
self.meta_file = meta_file
self.hierarchy_file = hierarchy_file
self.image_level_ann_file = image_level_ann_file
super().__init__(**kwargs)
def load_data_list(self) -> List[dict]:
"""Load annotations from an annotation file named as ``self.ann_file``
Returns:
List[dict]: A list of annotation.
"""
classes_names, label_id_mapping = self._parse_label_file(
self.label_file)
self._metainfo['classes'] = classes_names
self.label_id_mapping = label_id_mapping
if self.image_level_ann_file is not None:
img_level_anns = self._parse_img_level_ann(
self.image_level_ann_file)
else:
img_level_anns = None
# OpenImagesMetric can get the relation matrix from the dataset meta
relation_matrix = self._get_relation_matrix(self.hierarchy_file)
self._metainfo['RELATION_MATRIX'] = relation_matrix
data_list = []
with get_local_path(
self.ann_file, backend_args=self.backend_args) as local_path:
with open(local_path, 'r') as f:
reader = csv.reader(f)
last_img_id = None
instances = []
for i, line in enumerate(reader):
if i == 0:
continue
img_id = line[0]
if last_img_id is None:
last_img_id = img_id
label_id = line[2]
assert label_id in self.label_id_mapping
label = int(self.label_id_mapping[label_id])
bbox = [
float(line[4]), # xmin
float(line[6]), # ymin
float(line[5]), # xmax
float(line[7]) # ymax
]
is_occluded = True if int(line[8]) == 1 else False
is_truncated = True if int(line[9]) == 1 else False
is_group_of = True if int(line[10]) == 1 else False
is_depiction = True if int(line[11]) == 1 else False
is_inside = True if int(line[12]) == 1 else False
instance = dict(
bbox=bbox,
bbox_label=label,
ignore_flag=0,
is_occluded=is_occluded,
is_truncated=is_truncated,
is_group_of=is_group_of,
is_depiction=is_depiction,
is_inside=is_inside)
last_img_path = osp.join(self.data_prefix['img'],
f'{last_img_id}.jpg')
if img_id != last_img_id:
# switch to a new image, record previous image's data.
data_info = dict(
img_path=last_img_path,
img_id=last_img_id,
instances=instances,
)
data_list.append(data_info)
instances = []
instances.append(instance)
last_img_id = img_id
data_list.append(
dict(
img_path=last_img_path,
img_id=last_img_id,
instances=instances,
))
# add image metas to data list
img_metas = load(
self.meta_file, file_format='pkl', backend_args=self.backend_args)
assert len(img_metas) == len(data_list)
for i, meta in enumerate(img_metas):
img_id = data_list[i]['img_id']
assert f'{img_id}.jpg' == osp.split(meta['filename'])[-1]
h, w = meta['ori_shape'][:2]
data_list[i]['height'] = h
data_list[i]['width'] = w
# denormalize bboxes
for j in range(len(data_list[i]['instances'])):
data_list[i]['instances'][j]['bbox'][0] *= w
data_list[i]['instances'][j]['bbox'][2] *= w
data_list[i]['instances'][j]['bbox'][1] *= h
data_list[i]['instances'][j]['bbox'][3] *= h
# add image-level annotation
if img_level_anns is not None:
img_labels = []
confidences = []
img_ann_list = img_level_anns.get(img_id, [])
for ann in img_ann_list:
img_labels.append(int(ann['image_level_label']))
confidences.append(float(ann['confidence']))
data_list[i]['image_level_labels'] = np.array(
img_labels, dtype=np.int64)
data_list[i]['confidences'] = np.array(
confidences, dtype=np.float32)
return data_list
def _parse_label_file(self, label_file: str) -> tuple:
"""Get classes name and index mapping from cls-label-description file.
Args:
label_file (str): File path of the label description file that
maps the classes names in MID format to their short
descriptions.
Returns:
tuple: Class name of OpenImages.
"""
index_list = []
classes_names = []
with get_local_path(
label_file, backend_args=self.backend_args) as local_path:
with open(local_path, 'r') as f:
reader = csv.reader(f)
for line in reader:
# self.cat2label[line[0]] = line[1]
classes_names.append(line[1])
index_list.append(line[0])
index_mapping = {index: i for i, index in enumerate(index_list)}
return classes_names, index_mapping
def _parse_img_level_ann(self,
img_level_ann_file: str) -> Dict[str, List[dict]]:
"""Parse image level annotations from csv style ann_file.
Args:
img_level_ann_file (str): CSV style image level annotation
file path.
Returns:
Dict[str, List[dict]]: Annotations where item of the defaultdict
indicates an image, each of which has (n) dicts.
Keys of dicts are:
- `image_level_label` (int): Label id.
- `confidence` (float): Labels that are human-verified to be
present in an image have confidence = 1 (positive labels).
Labels that are human-verified to be absent from an image
have confidence = 0 (negative labels). Machine-generated
labels have fractional confidences, generally >= 0.5.
The higher the confidence, the smaller the chance for
the label to be a false positive.
"""
item_lists = defaultdict(list)
with get_local_path(
img_level_ann_file,
backend_args=self.backend_args) as local_path:
with open(local_path, 'r') as f:
reader = csv.reader(f)
for i, line in enumerate(reader):
if i == 0:
continue
img_id = line[0]
item_lists[img_id].append(
dict(
image_level_label=int(
self.label_id_mapping[line[2]]),
confidence=float(line[3])))
return item_lists
def _get_relation_matrix(self, hierarchy_file: str) -> np.ndarray:
"""Get the matrix of class hierarchy from the hierarchy file. Hierarchy
for 600 classes can be found at https://storage.googleapis.com/openimag
es/2018_04/bbox_labels_600_hierarchy_visualizer/circle.html.
Args:
hierarchy_file (str): File path to the hierarchy for classes.
Returns:
np.ndarray: The matrix of the corresponding relationship between
the parent class and the child class, of shape
(class_num, class_num).
""" # noqa
hierarchy = load(
hierarchy_file, file_format='json', backend_args=self.backend_args)
class_num = len(self._metainfo['classes'])
relation_matrix = np.eye(class_num, class_num)
relation_matrix = self._convert_hierarchy_tree(hierarchy,
relation_matrix)
return relation_matrix
def _convert_hierarchy_tree(self,
hierarchy_map: dict,
relation_matrix: np.ndarray,
parents: list = [],
get_all_parents: bool = True) -> np.ndarray:
"""Get matrix of the corresponding relationship between the parent
class and the child class.
Args:
hierarchy_map (dict): Including label name and corresponding
subcategory. Keys of dicts are:
- `LabeName` (str): Name of the label.
- `Subcategory` (dict | list): Corresponding subcategory(ies).
relation_matrix (ndarray): The matrix of the corresponding
relationship between the parent class and the child class,
of shape (class_num, class_num).
parents (list): Corresponding parent class.
get_all_parents (bool): Whether get all parent names.
Default: True
Returns:
ndarray: The matrix of the corresponding relationship between
the parent class and the child class, of shape
(class_num, class_num).
"""
if 'Subcategory' in hierarchy_map:
for node in hierarchy_map['Subcategory']:
if 'LabelName' in node:
children_name = node['LabelName']
children_index = self.label_id_mapping[children_name]
children = [children_index]
else:
continue
if len(parents) > 0:
for parent_index in parents:
if get_all_parents:
children.append(parent_index)
relation_matrix[children_index, parent_index] = 1
relation_matrix = self._convert_hierarchy_tree(
node, relation_matrix, parents=children)
return relation_matrix
def _join_prefix(self):
"""Join ``self.data_root`` with annotation path."""
super()._join_prefix()
if not is_abs(self.label_file) and self.label_file:
self.label_file = osp.join(self.data_root, self.label_file)
if not is_abs(self.meta_file) and self.meta_file:
self.meta_file = osp.join(self.data_root, self.meta_file)
if not is_abs(self.hierarchy_file) and self.hierarchy_file:
self.hierarchy_file = osp.join(self.data_root, self.hierarchy_file)
if self.image_level_ann_file and not is_abs(self.image_level_ann_file):
self.image_level_ann_file = osp.join(self.data_root,
self.image_level_ann_file)
@DATASETS.register_module()
class OpenImagesChallengeDataset(OpenImagesDataset):
"""Open Images Challenge dataset for detection.
Args:
ann_file (str): Open Images Challenge box annotation in txt format.
"""
METAINFO: dict = dict(dataset_type='oid_challenge')
def __init__(self, ann_file: str, **kwargs) -> None:
if not ann_file.endswith('txt'):
raise TypeError('The annotation file of Open Images Challenge '
'should be a txt file.')
super().__init__(ann_file=ann_file, **kwargs)
def load_data_list(self) -> List[dict]:
"""Load annotations from an annotation file named as ``self.ann_file``
Returns:
List[dict]: A list of annotation.
"""
classes_names, label_id_mapping = self._parse_label_file(
self.label_file)
self._metainfo['classes'] = classes_names
self.label_id_mapping = label_id_mapping
if self.image_level_ann_file is not None:
img_level_anns = self._parse_img_level_ann(
self.image_level_ann_file)
else:
img_level_anns = None
# OpenImagesMetric can get the relation matrix from the dataset meta
relation_matrix = self._get_relation_matrix(self.hierarchy_file)
self._metainfo['RELATION_MATRIX'] = relation_matrix
data_list = []
with get_local_path(
self.ann_file, backend_args=self.backend_args) as local_path:
with open(local_path, 'r') as f:
lines = f.readlines()
i = 0
while i < len(lines):
instances = []
filename = lines[i].rstrip()
i += 2
img_gt_size = int(lines[i])
i += 1
for j in range(img_gt_size):
sp = lines[i + j].split()
instances.append(
dict(
bbox=[
float(sp[1]),
float(sp[2]),
float(sp[3]),
float(sp[4])
],
bbox_label=int(sp[0]) - 1, # labels begin from 1
ignore_flag=0,
is_group_ofs=True if int(sp[5]) == 1 else False))
i += img_gt_size
data_list.append(
dict(
img_path=osp.join(self.data_prefix['img'], filename),
instances=instances,
))
# add image metas to data list
img_metas = load(
self.meta_file, file_format='pkl', backend_args=self.backend_args)
assert len(img_metas) == len(data_list)
for i, meta in enumerate(img_metas):
img_id = osp.split(data_list[i]['img_path'])[-1][:-4]
assert img_id == osp.split(meta['filename'])[-1][:-4]
h, w = meta['ori_shape'][:2]
data_list[i]['height'] = h
data_list[i]['width'] = w
data_list[i]['img_id'] = img_id
# denormalize bboxes
for j in range(len(data_list[i]['instances'])):
data_list[i]['instances'][j]['bbox'][0] *= w
data_list[i]['instances'][j]['bbox'][2] *= w
data_list[i]['instances'][j]['bbox'][1] *= h
data_list[i]['instances'][j]['bbox'][3] *= h
# add image-level annotation
if img_level_anns is not None:
img_labels = []
confidences = []
img_ann_list = img_level_anns.get(img_id, [])
for ann in img_ann_list:
img_labels.append(int(ann['image_level_label']))
confidences.append(float(ann['confidence']))
data_list[i]['image_level_labels'] = np.array(
img_labels, dtype=np.int64)
data_list[i]['confidences'] = np.array(
confidences, dtype=np.float32)
return data_list
def _parse_label_file(self, label_file: str) -> tuple:
"""Get classes name and index mapping from cls-label-description file.
Args:
label_file (str): File path of the label description file that
maps the classes names in MID format to their short
descriptions.
Returns:
tuple: Class name of OpenImages.
"""
label_list = []
id_list = []
index_mapping = {}
with get_local_path(
label_file, backend_args=self.backend_args) as local_path:
with open(local_path, 'r') as f:
reader = csv.reader(f)
for line in reader:
label_name = line[0]
label_id = int(line[2])
label_list.append(line[1])
id_list.append(label_id)
index_mapping[label_name] = label_id - 1
indexes = np.argsort(id_list)
classes_names = []
for index in indexes:
classes_names.append(label_list[index])
return classes_names, index_mapping
def _parse_img_level_ann(self, image_level_ann_file):
"""Parse image level annotations from csv style ann_file.
Args:
image_level_ann_file (str): CSV style image level annotation
file path.
Returns:
defaultdict[list[dict]]: Annotations where item of the defaultdict
indicates an image, each of which has (n) dicts.
Keys of dicts are:
- `image_level_label` (int): of shape 1.
- `confidence` (float): of shape 1.
"""
item_lists = defaultdict(list)
with get_local_path(
image_level_ann_file,
backend_args=self.backend_args) as local_path:
with open(local_path, 'r') as f:
reader = csv.reader(f)
i = -1
for line in reader:
i += 1
if i == 0:
continue
else:
img_id = line[0]
label_id = line[1]
assert label_id in self.label_id_mapping
image_level_label = int(
self.label_id_mapping[label_id])
confidence = float(line[2])
item_lists[img_id].append(
dict(
image_level_label=image_level_label,
confidence=confidence))
return item_lists
def _get_relation_matrix(self, hierarchy_file: str) -> np.ndarray:
"""Get the matrix of class hierarchy from the hierarchy file.
Args:
hierarchy_file (str): File path to the hierarchy for classes.
Returns:
np.ndarray: The matrix of the corresponding
relationship between the parent class and the child class,
of shape (class_num, class_num).
"""
with get_local_path(
hierarchy_file, backend_args=self.backend_args) as local_path:
class_label_tree = np.load(local_path, allow_pickle=True)
return class_label_tree[1:, 1:]
|