File size: 13,726 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import Callable, List, Optional, Sequence, Union

from mmdet.registry import DATASETS
from .api_wrappers import COCOPanoptic
from .coco import CocoDataset


@DATASETS.register_module()
class CocoPanopticDataset(CocoDataset):
    """Coco dataset for Panoptic segmentation.

    The annotation format is shown as follows. The `ann` field is optional
    for testing.

    .. code-block:: none

        [
            {
                'filename': f'{image_id:012}.png',
                'image_id':9
                'segments_info':
                [
                    {
                        'id': 8345037, (segment_id in panoptic png,
                                        convert from rgb)
                        'category_id': 51,
                        'iscrowd': 0,
                        'bbox': (x1, y1, w, h),
                        'area': 24315
                    },
                    ...
                ]
            },
            ...
        ]

    Args:
        ann_file (str): Annotation file path. Defaults to ''.
        metainfo (dict, optional): Meta information for dataset, such as class
            information. Defaults to None.
        data_root (str, optional): The root directory for ``data_prefix`` and
            ``ann_file``. Defaults to None.
        data_prefix (dict, optional): Prefix for training data. Defaults to
            ``dict(img=None, ann=None, seg=None)``. The prefix ``seg`` which is
            for panoptic segmentation map must be not None.
        filter_cfg (dict, optional): Config for filter data. Defaults to None.
        indices (int or Sequence[int], optional): Support using first few
            data in annotation file to facilitate training/testing on a smaller
            dataset. Defaults to None which means using all ``data_infos``.
        serialize_data (bool, optional): Whether to hold memory using
            serialized objects, when enabled, data loader workers can use
            shared RAM from master process instead of making a copy. Defaults
            to True.
        pipeline (list, optional): Processing pipeline. Defaults to [].
        test_mode (bool, optional): ``test_mode=True`` means in test phase.
            Defaults to False.
        lazy_init (bool, optional): Whether to load annotation during
            instantiation. In some cases, such as visualization, only the meta
            information of the dataset is needed, which is not necessary to
            load annotation file. ``Basedataset`` can skip load annotations to
            save time by set ``lazy_init=False``. Defaults to False.
        max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
            None img. The maximum extra number of cycles to get a valid
            image. Defaults to 1000.
    """

    METAINFO = {
        'classes':
        ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
         'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
         'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
         'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
         'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
         'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
         'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
         'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
         'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
         'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
         'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
         'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
         'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner',
         'blanket', 'bridge', 'cardboard', 'counter', 'curtain', 'door-stuff',
         'floor-wood', 'flower', 'fruit', 'gravel', 'house', 'light',
         'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield',
         'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow',
         'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile',
         'wall-wood', 'water-other', 'window-blind', 'window-other',
         'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged',
         'cabinet-merged', 'table-merged', 'floor-other-merged',
         'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged',
         'paper-merged', 'food-other-merged', 'building-other-merged',
         'rock-merged', 'wall-other-merged', 'rug-merged'),
        'thing_classes':
        ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
         'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
         'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
         'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
         'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
         'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
         'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
         'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
         'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
         'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
         'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
         'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
         'scissors', 'teddy bear', 'hair drier', 'toothbrush'),
        'stuff_classes':
        ('banner', 'blanket', 'bridge', 'cardboard', 'counter', 'curtain',
         'door-stuff', 'floor-wood', 'flower', 'fruit', 'gravel', 'house',
         'light', 'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield',
         'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow',
         'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile',
         'wall-wood', 'water-other', 'window-blind', 'window-other',
         'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged',
         'cabinet-merged', 'table-merged', 'floor-other-merged',
         'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged',
         'paper-merged', 'food-other-merged', 'building-other-merged',
         'rock-merged', 'wall-other-merged', 'rug-merged'),
        'palette':
        [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230), (106, 0, 228),
         (0, 60, 100), (0, 80, 100), (0, 0, 70), (0, 0, 192), (250, 170, 30),
         (100, 170, 30), (220, 220, 0), (175, 116, 175), (250, 0, 30),
         (165, 42, 42), (255, 77, 255), (0, 226, 252), (182, 182, 255),
         (0, 82, 0), (120, 166, 157), (110, 76, 0), (174, 57, 255),
         (199, 100, 0), (72, 0, 118), (255, 179, 240), (0, 125, 92),
         (209, 0, 151), (188, 208, 182), (0, 220, 176), (255, 99, 164),
         (92, 0, 73), (133, 129, 255), (78, 180, 255), (0, 228, 0),
         (174, 255, 243), (45, 89, 255), (134, 134, 103), (145, 148, 174),
         (255, 208, 186), (197, 226, 255), (171, 134, 1), (109, 63, 54),
         (207, 138, 255), (151, 0, 95), (9, 80, 61), (84, 105, 51),
         (74, 65, 105), (166, 196, 102), (208, 195, 210), (255, 109, 65),
         (0, 143, 149), (179, 0, 194), (209, 99, 106), (5, 121, 0),
         (227, 255, 205), (147, 186, 208), (153, 69, 1), (3, 95, 161),
         (163, 255, 0), (119, 0, 170), (0, 182, 199), (0, 165, 120),
         (183, 130, 88), (95, 32, 0), (130, 114, 135), (110, 129, 133),
         (166, 74, 118), (219, 142, 185), (79, 210, 114), (178, 90, 62),
         (65, 70, 15), (127, 167, 115), (59, 105, 106), (142, 108, 45),
         (196, 172, 0), (95, 54, 80), (128, 76, 255), (201, 57, 1),
         (246, 0, 122), (191, 162, 208), (255, 255, 128), (147, 211, 203),
         (150, 100, 100), (168, 171, 172), (146, 112, 198), (210, 170, 100),
         (92, 136, 89), (218, 88, 184), (241, 129, 0), (217, 17, 255),
         (124, 74, 181), (70, 70, 70), (255, 228, 255), (154, 208, 0),
         (193, 0, 92), (76, 91, 113), (255, 180, 195), (106, 154, 176),
         (230, 150, 140), (60, 143, 255), (128, 64, 128), (92, 82, 55),
         (254, 212, 124), (73, 77, 174), (255, 160, 98), (255, 255, 255),
         (104, 84, 109), (169, 164, 131), (225, 199, 255), (137, 54, 74),
         (135, 158, 223), (7, 246, 231), (107, 255, 200), (58, 41, 149),
         (183, 121, 142), (255, 73, 97), (107, 142, 35), (190, 153, 153),
         (146, 139, 141), (70, 130, 180), (134, 199, 156), (209, 226, 140),
         (96, 36, 108), (96, 96, 96), (64, 170, 64), (152, 251, 152),
         (208, 229, 228), (206, 186, 171), (152, 161, 64), (116, 112, 0),
         (0, 114, 143), (102, 102, 156), (250, 141, 255)]
    }
    COCOAPI = COCOPanoptic
    # ann_id is not unique in coco panoptic dataset.
    ANN_ID_UNIQUE = False

    def __init__(self,
                 ann_file: str = '',
                 metainfo: Optional[dict] = None,
                 data_root: Optional[str] = None,
                 data_prefix: dict = dict(img=None, ann=None, seg=None),
                 filter_cfg: Optional[dict] = None,
                 indices: Optional[Union[int, Sequence[int]]] = None,
                 serialize_data: bool = True,
                 pipeline: List[Union[dict, Callable]] = [],
                 test_mode: bool = False,
                 lazy_init: bool = False,
                 max_refetch: int = 1000,
                 backend_args: dict = None,
                 **kwargs) -> None:
        super().__init__(
            ann_file=ann_file,
            metainfo=metainfo,
            data_root=data_root,
            data_prefix=data_prefix,
            filter_cfg=filter_cfg,
            indices=indices,
            serialize_data=serialize_data,
            pipeline=pipeline,
            test_mode=test_mode,
            lazy_init=lazy_init,
            max_refetch=max_refetch,
            backend_args=backend_args,
            **kwargs)

    def parse_data_info(self, raw_data_info: dict) -> dict:
        """Parse raw annotation to target format.

        Args:
            raw_data_info (dict): Raw data information load from ``ann_file``.

        Returns:
            dict: Parsed annotation.
        """
        img_info = raw_data_info['raw_img_info']
        ann_info = raw_data_info['raw_ann_info']
        # filter out unmatched annotations which have
        # same segment_id but belong to other image
        ann_info = [
            ann for ann in ann_info if ann['image_id'] == img_info['img_id']
        ]
        data_info = {}

        img_path = osp.join(self.data_prefix['img'], img_info['file_name'])
        if self.data_prefix.get('seg', None):
            seg_map_path = osp.join(
                self.data_prefix['seg'],
                img_info['file_name'].replace('jpg', 'png'))
        else:
            seg_map_path = None
        data_info['img_path'] = img_path
        data_info['img_id'] = img_info['img_id']
        data_info['seg_map_path'] = seg_map_path
        data_info['height'] = img_info['height']
        data_info['width'] = img_info['width']

        instances = []
        segments_info = []
        for ann in ann_info:
            instance = {}
            x1, y1, w, h = ann['bbox']
            if ann['area'] <= 0 or w < 1 or h < 1:
                continue
            bbox = [x1, y1, x1 + w, y1 + h]
            category_id = ann['category_id']
            contiguous_cat_id = self.cat2label[category_id]

            is_thing = self.coco.load_cats(ids=category_id)[0]['isthing']
            if is_thing:
                is_crowd = ann.get('iscrowd', False)
                instance['bbox'] = bbox
                instance['bbox_label'] = contiguous_cat_id
                if not is_crowd:
                    instance['ignore_flag'] = 0
                else:
                    instance['ignore_flag'] = 1
                    is_thing = False

            segment_info = {
                'id': ann['id'],
                'category': contiguous_cat_id,
                'is_thing': is_thing
            }
            segments_info.append(segment_info)
            if len(instance) > 0 and is_thing:
                instances.append(instance)
        data_info['instances'] = instances
        data_info['segments_info'] = segments_info
        return data_info

    def filter_data(self) -> List[dict]:
        """Filter images too small or without ground truth.

        Returns:
            List[dict]: ``self.data_list`` after filtering.
        """
        if self.test_mode:
            return self.data_list

        if self.filter_cfg is None:
            return self.data_list

        filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False)
        min_size = self.filter_cfg.get('min_size', 0)

        ids_with_ann = set()
        # check whether images have legal thing annotations.
        for data_info in self.data_list:
            for segment_info in data_info['segments_info']:
                if not segment_info['is_thing']:
                    continue
                ids_with_ann.add(data_info['img_id'])

        valid_data_list = []
        for data_info in self.data_list:
            img_id = data_info['img_id']
            width = data_info['width']
            height = data_info['height']
            if filter_empty_gt and img_id not in ids_with_ann:
                continue
            if min(width, height) >= min_size:
                valid_data_list.append(data_info)

        return valid_data_list