File size: 4,758 Bytes
4d0eb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Iterable

import torch
from torch.optim.optimizer import Optimizer

from mmpretrain.registry import OPTIMIZERS


@OPTIMIZERS.register_module()
class LARS(Optimizer):
    """Implements layer-wise adaptive rate scaling for SGD.

    Based on Algorithm 1 of the following paper by You, Gitman, and Ginsburg.
    `Large Batch Training of Convolutional Networks:
    <https://arxiv.org/abs/1708.03888>`_.

    Args:
        params (Iterable): Iterable of parameters to optimize or dicts defining
            parameter groups.
        lr (float): Base learning rate.
        momentum (float): Momentum factor. Defaults to 0.
        weight_decay (float): Weight decay (L2 penalty). Defaults to 0.
        dampening (float): Dampening for momentum. Defaults to 0.
        eta (float): LARS coefficient. Defaults to 0.001.
        nesterov (bool): Enables Nesterov momentum. Defaults to False.
        eps (float): A small number to avoid dviding zero. Defaults to 1e-8.

    Example:
        >>> optimizer = LARS(model.parameters(), lr=0.1, momentum=0.9,
        >>>                  weight_decay=1e-4, eta=1e-3)
        >>> optimizer.zero_grad()
        >>> loss_fn(model(input), target).backward()
        >>> optimizer.step()
    """

    def __init__(self,
                 params: Iterable,
                 lr: float,
                 momentum: float = 0,
                 weight_decay: float = 0,
                 dampening: float = 0,
                 eta: float = 0.001,
                 nesterov: bool = False,
                 eps: float = 1e-8) -> None:
        if not isinstance(lr, float) and lr < 0.0:
            raise ValueError(f'Invalid learning rate: {lr}')
        if momentum < 0.0:
            raise ValueError(f'Invalid momentum value: {momentum}')
        if weight_decay < 0.0:
            raise ValueError(f'Invalid weight_decay value: {weight_decay}')
        if eta < 0.0:
            raise ValueError(f'Invalid LARS coefficient value: {eta}')

        defaults = dict(
            lr=lr,
            momentum=momentum,
            dampening=dampening,
            weight_decay=weight_decay,
            nesterov=nesterov,
            eta=eta)
        if nesterov and (momentum <= 0 or dampening != 0):
            raise ValueError(
                'Nesterov momentum requires a momentum and zero dampening')

        self.eps = eps
        super().__init__(params, defaults)

    def __setstate__(self, state) -> None:
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault('nesterov', False)

    @torch.no_grad()
    def step(self, closure=None) -> torch.Tensor:
        """Performs a single optimization step.

        Args:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            dampening = group['dampening']
            eta = group['eta']
            nesterov = group['nesterov']
            lr = group['lr']
            lars_exclude = group.get('lars_exclude', False)

            for p in group['params']:
                if p.grad is None:
                    continue

                d_p = p.grad

                if lars_exclude:
                    local_lr = 1.
                else:
                    weight_norm = torch.norm(p).item()
                    grad_norm = torch.norm(d_p).item()
                    if weight_norm != 0 and grad_norm != 0:
                        # Compute local learning rate for this layer
                        local_lr = eta * weight_norm / \
                            (grad_norm + weight_decay * weight_norm + self.eps)
                    else:
                        local_lr = 1.

                actual_lr = local_lr * lr
                d_p = d_p.add(p, alpha=weight_decay).mul(actual_lr)
                if momentum != 0:
                    param_state = self.state[p]
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = \
                                torch.clone(d_p).detach()
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
                    if nesterov:
                        d_p = d_p.add(buf, alpha=momentum)
                    else:
                        d_p = buf
                p.add_(-d_p)

        return loss