Spaces:
Runtime error
Runtime error
File size: 3,664 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List
import mat4py
from mmengine import get_file_backend
from mmpretrain.registry import DATASETS
from .base_dataset import BaseDataset
from .categories import DTD_CATEGORIES
@DATASETS.register_module()
class DTD(BaseDataset):
"""The Describable Texture Dataset (DTD).
Support the `Describable Texture Dataset <https://www.robots.ox.ac.uk/~vgg/data/dtd/>`_ Dataset.
After downloading and decompression, the dataset directory structure is as follows.
DTD dataset directory: ::
dtd
βββ images
β βββ banded
| | βββbanded_0002.jpg
| | βββbanded_0004.jpg
| | βββ ...
β βββ ...
βββ imdb
β βββ imdb.mat
βββ labels
| | βββlabels_joint_anno.txt
| | βββtest1.txt
| | βββtest2.txt
| | βββ ...
β βββ ...
βββ ....
Args:
data_root (str): The root directory for Describable Texture dataset.
split (str, optional): The dataset split, supports "train",
"val", "trainval", and "test". Default to "trainval".
Examples:
>>> from mmpretrain.datasets import DTD
>>> train_dataset = DTD(data_root='data/dtd', split='trainval')
>>> train_dataset
Dataset DTD
Number of samples: 3760
Number of categories: 47
Root of dataset: data/dtd
>>> test_dataset = DTD(data_root='data/dtd', split='test')
>>> test_dataset
Dataset DTD
Number of samples: 1880
Number of categories: 47
Root of dataset: data/dtd
""" # noqa: E501
METAINFO = {'classes': DTD_CATEGORIES}
def __init__(self, data_root: str, split: str = 'trainval', **kwargs):
splits = ['train', 'val', 'trainval', 'test']
assert split in splits, \
f"The split must be one of {splits}, but get '{split}'"
self.split = split
data_prefix = 'images'
test_mode = split == 'test'
self.backend = get_file_backend(data_root, enable_singleton=True)
ann_file = self.backend.join_path('imdb', 'imdb.mat')
super(DTD, self).__init__(
ann_file=ann_file,
data_root=data_root,
data_prefix=data_prefix,
test_mode=test_mode,
**kwargs)
def load_data_list(self):
"""Load images and ground truth labels."""
data = mat4py.loadmat(self.ann_file)['images']
names = data['name']
labels = data['class']
parts = data['set']
num = len(names)
assert num == len(labels) == len(parts), 'get error ann file'
if self.split == 'train':
target_set = {1}
elif self.split == 'val':
target_set = {2}
elif self.split == 'test':
target_set = {3}
else:
target_set = {1, 2}
data_list = []
for i in range(num):
if parts[i] in target_set:
img_name = names[i]
img_path = self.backend.join_path(self.img_prefix, img_name)
gt_label = labels[i] - 1
info = dict(img_path=img_path, gt_label=gt_label)
data_list.append(info)
return data_list
def extra_repr(self) -> List[str]:
"""The extra repr information of the dataset."""
body = [
f'Root of dataset: \t{self.data_root}',
]
return body
|