Spaces:
Runtime error
Runtime error
File size: 13,302 Bytes
ab01e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
from Models.BackBone import *
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None):
super(DoubleConv, self).__init__()
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(mid_channels),
nn.LeakyReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class BoTMultiHeadAttention(nn.Module):
def __init__(self, in_feature_dim, num_heads=8, dim_head=None, dropout_rate=0.):
super().__init__()
self.num_heads = num_heads
self.dim_head = dim_head or in_feature_dim // num_heads
self.scale = self.dim_head ** -0.5
inner_dim = self.dim_head * self.num_heads
self.weights_qkv = nn.ModuleList([
nn.Linear(in_feature_dim, inner_dim, bias=False),
nn.Linear(in_feature_dim, inner_dim, bias=False),
nn.Linear(in_feature_dim, inner_dim, bias=False)
])
self.out_layer = nn.Sequential(
nn.Linear(inner_dim, in_feature_dim),
nn.Dropout(dropout_rate)
)
self.layer_norm = nn.LayerNorm(in_feature_dim)
def forward(self, q_s, k_s=None, v_s=None, pos_emb=None):
if k_s is None and v_s is None:
k_s = v_s = q_s
elif v_s is None:
v_s = k_s
q, k, v = [self.weights_qkv[idx](x) for idx, x in enumerate([q_s, k_s, v_s])]
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.num_heads), [q, k, v])
content_content_att = torch.einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
if pos_emb is not None:
pos_emb = rearrange(pos_emb, 'b n (h d) -> b h n d', h=self.num_heads)
content_position_att = torch.einsum('b h i d, b h j d -> b h i j', q, pos_emb) * self.scale
att_mat = content_content_att + content_position_att
else:
att_mat = content_content_att
att_mat = att_mat.softmax(dim=-1)
atted_x = torch.einsum('b h i j , b h j d -> b h i d', att_mat, v)
atted_x = rearrange(atted_x, 'b h n d -> b n (h d)')
atted_x = self.out_layer(atted_x)
out = self.layer_norm(atted_x + q_s)
return out
class STTNet(nn.Module):
def __init__(self, in_channel, n_classes, *args, **kwargs):
super(STTNet, self).__init__()
self.in_channel = in_channel
self.n_classes = n_classes
# kwargs['backbone'] = res18, res50 or vgg16
self.res_backbone = get_backbone(
model_name=kwargs['backbone'], num_classes=None, **kwargs
)
# kwargs['out_keys'] = ['block_4'] or ['block_5']
self.last_block = kwargs['out_keys'][-1]
if '18' in kwargs['backbone']:
# 512 256 128 64 32 16
layer_channels = [64, 64, 128, 256, 512]
self.reduce_dim_in = 256
self.reduce_dim_out = 256 // 4
elif '50' in kwargs['backbone']:
layer_channels = [64, 256, 512, 1024, 2048]
self.reduce_dim_in = 1024
self.reduce_dim_out = 1024 // 16
elif '16' in kwargs['backbone']:
layer_channels = [64, 128, 256, 512, 512]
self.reduce_dim_in = 512
self.reduce_dim_out = 512 // 8
self.f_map_size = 32
# kwargs['top_k_s'] = 64
self.top_k_s = kwargs['top_k_s']
# kwargs['top_k_c'] = 16
self.top_k_c = kwargs['top_k_c']
# kwargs['encoder_pos'] = True or False
self.encoder_pos = kwargs['encoder_pos']
# kwargs['decoder_pos'] = True or False
self.decoder_pos = kwargs['decoder_pos']
# kwargs['model_pattern'] = ['X', 'A', 'S', 'C'] means different features concatenation
self.model_pattern = kwargs['model_pattern']
self.cat_num = len(self.model_pattern)
if 'A' in self.model_pattern:
self.cat_num += 1
self.num_head_s = max(2, min(self.top_k_s // 8, 64))
self.num_head_c = min(2, min(self.top_k_c // 4, 64))
self.reduce_channel_b5 = nn.Sequential(
nn.Conv2d(in_channels=self.reduce_dim_in, out_channels=self.reduce_dim_out, kernel_size=1),
nn.BatchNorm2d(self.reduce_dim_out),
nn.LeakyReLU()
)
# position embedding
# if self.encoder_pos or self.decoder_pos:
self.spatial_embedding_h = nn.Parameter(
torch.randn(1, self.reduce_dim_out, self.f_map_size, 1), requires_grad=True)
self.spatial_embedding_w = nn.Parameter(
torch.randn(1, self.reduce_dim_out, 1, self.f_map_size), requires_grad=True)
self.channel_embedding = nn.Parameter(
torch.randn(1, self.reduce_dim_out, self.f_map_size ** 2), requires_grad=True)
# spatial attention ops
self.get_s_probability = nn.Sequential(
nn.Conv2d(self.reduce_dim_out, self.reduce_dim_out // 4, kernel_size=3, padding=1),
nn.BatchNorm2d(self.reduce_dim_out // 4),
nn.LeakyReLU(inplace=True),
nn.Conv2d(self.reduce_dim_out // 4, 1, kernel_size=3, padding=1),
nn.Sigmoid()
)
# b5 spatial encoder and decoder
self.tf_encoder_spatial_b5 = BoTMultiHeadAttention(
in_feature_dim=self.reduce_dim_out,
num_heads=self.num_head_s
)
self.tf_decoder_spatial_b5 = BoTMultiHeadAttention(
in_feature_dim=self.reduce_dim_out,
num_heads=self.num_head_s
)
# channel attention ops
self.get_c_probability = nn.Sequential(
nn.Conv2d(self.reduce_dim_out, self.reduce_dim_out // 8, kernel_size=self.f_map_size),
nn.BatchNorm2d(self.reduce_dim_out // 8),
nn.LeakyReLU(inplace=True),
nn.Conv2d(self.reduce_dim_out // 8, self.reduce_dim_out, kernel_size=1),
nn.Sigmoid()
)
# b5 channel encoder and decoder
self.tf_encoder_channel_b5 = BoTMultiHeadAttention(
in_feature_dim=self.f_map_size ** 2,
num_heads=self.num_head_c
)
self.tf_decoder_channel_b5 = BoTMultiHeadAttention(
in_feature_dim=self.f_map_size ** 2,
num_heads=self.num_head_c
)
self.before_predict_head_conv = nn.Sequential(
nn.Conv2d(in_channels=self.reduce_dim_out * self.cat_num, out_channels=self.reduce_dim_in, kernel_size=1),
nn.BatchNorm2d(self.reduce_dim_in),
nn.LeakyReLU()
)
if self.last_block == 'block5':
self.pre_pixel_shuffle = nn.PixelShuffle(2)
# 128, 256, 256
self.pre_double_conv = DoubleConv(
in_channels=layer_channels[4] // 4,
out_channels=layer_channels[3],
mid_channels=layer_channels[3]
)
self.pixel_shuffle1 = nn.PixelShuffle(4)
# 16, 64, 64
self.double_conv1 = DoubleConv(
in_channels=layer_channels[3] // 16,
out_channels=layer_channels[1],
mid_channels=layer_channels[3] // 4
)
# 4, 16, 16
self.pixel_shuffle2 = nn.PixelShuffle(4)
self.double_conv2 = DoubleConv(
in_channels=layer_channels[1] // 16,
out_channels=layer_channels[1] // 4,
mid_channels=layer_channels[1] // 4
)
last_channels = layer_channels[1] // 4
# 16, 32
# 32, 2
if '18' in kwargs['backbone']:
scale_factor = 2
else:
scale_factor = 1
self.predict_head_out = nn.Sequential(
nn.Conv2d(in_channels=last_channels, out_channels=last_channels * scale_factor, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(last_channels * scale_factor),
nn.LeakyReLU(),
nn.Conv2d(in_channels=last_channels * scale_factor, out_channels=n_classes, kernel_size=3, stride=1, padding=1),
)
self.loss_att_branch = nn.Sequential(
nn.Conv2d(in_channels=self.reduce_dim_out * 2, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(),
nn.Conv2d(in_channels=64, out_channels=n_classes, kernel_size=3, stride=1, padding=1),
)
def forward(self, x, *args, **kwargs):
x, endpoints = self.res_backbone(x)
# reduce channel 512 to 128
x_reduced_channel = self.reduce_channel_b5(x) # B 128 h w
prob_s_map = self.get_s_probability(x_reduced_channel)
prob_c_map = self.get_c_probability(x_reduced_channel) # B C 1 1
x_att_s = x_reduced_channel * prob_s_map
x_att_c = x_reduced_channel * prob_c_map
output_cat = []
if 'X' in self.model_pattern:
output_cat.append(x_reduced_channel)
if 'A' in self.model_pattern:
output_cat.append(x_att_s)
output_cat.append(x_att_c)
if 'S' in self.model_pattern:
# spatial pos embedding
prob_s_vector = rearrange(prob_s_map, 'b c h w -> b (h w) c')
x_vec_s = rearrange(x_reduced_channel, 'b c h w -> b (h w) c')
# get top k, k = 16 * 16 // 4 x_b5_reduced_channel_vector
_, indices_s = torch.topk(prob_s_vector, k=self.top_k_s, dim=1, sorted=False) # B K 1
indices_s = repeat(indices_s, 'b k m -> b k (m c)', c=self.reduce_dim_out)
x_s_vec_topk = torch.gather(x_vec_s, 1, indices_s) # B K 128
if self.encoder_pos or self.decoder_pos:
s_pos_embedding = self.spatial_embedding_h + self.spatial_embedding_w # 1 128 16 16
s_pos_embedding = repeat(s_pos_embedding, 'm c h w -> (b m) c h w', b=x.size(0))
s_pos_embedding_vec = rearrange(s_pos_embedding, 'b c h w -> b (h w) c')
s_pos_embedding_vec_topk = torch.gather(s_pos_embedding_vec, 1, indices_s) # B K 128
if self.encoder_pos is True:
pos_encoder = s_pos_embedding_vec_topk
else:
pos_encoder = None
# b5 encoder and decoder op
tf_encoder_s_x = self.tf_encoder_spatial_b5(
q_s=x_s_vec_topk, k_s=None, v_s=None, pos_emb=pos_encoder
)
if self.decoder_pos is True:
pos_decoder = s_pos_embedding_vec_topk
else:
pos_decoder = None
tf_decoder_s_x = self.tf_decoder_spatial_b5(
q_s=x_vec_s, k_s=tf_encoder_s_x, v_s=None,
pos_emb=pos_decoder
) # B (16*16) 128
# B 128 16 16
tf_decoder_s_x = rearrange(tf_decoder_s_x, 'b (h w) c -> b c h w', h=self.f_map_size)
output_cat.append(tf_decoder_s_x)
if 'C' in self.model_pattern:
# channel attention ops
prob_c_vec = rearrange(prob_c_map, 'b c h w -> b c (h w)')
x_vec_c = rearrange(x_reduced_channel, 'b c h w -> b c (h w)')
# get top k, k = 128 // 4 = 32
_, indices_c = torch.topk(prob_c_vec, k=self.top_k_c, dim=1, sorted=True) # b k 1
indices_c = repeat(indices_c, 'b k m -> b k (m c)', c=self.f_map_size ** 2)
x_vec_c_topk = torch.gather(x_vec_c, 1, indices_c) # B K 256
if self.encoder_pos or self.decoder_pos:
c_pos_embedding_vec = repeat(self.channel_embedding, 'm len c -> (m b) len c', b=x.size(0))
c_pos_embedding_vec_topk = torch.gather(c_pos_embedding_vec, 1, indices_c) # B K 256
if self.encoder_pos is True:
pos_encoder = c_pos_embedding_vec_topk
else:
pos_encoder = None
# b5 encoder and decoder op
tf_encoder_c_x = self.tf_encoder_channel_b5(
q_s=x_vec_c_topk, k_s=None, v_s=None,
pos_emb=pos_encoder
)
if self.decoder_pos is True:
pos_decoder = c_pos_embedding_vec_topk
else:
pos_decoder = None
tf_decoder_c_x = self.tf_decoder_channel_b5(
q_s=x_vec_c, k_s=tf_encoder_c_x, v_s=None,
pos_emb=pos_decoder
) # B 128 (16*16)
# B 128 16 16
tf_decoder_c_x = rearrange(tf_decoder_c_x, 'b c (h w) -> b c h w', h=self.f_map_size)
output_cat.append(tf_decoder_c_x)
x_cat = torch.cat(output_cat, dim=1)
x_cat = self.before_predict_head_conv(x_cat)
x = self.double_conv1(self.pixel_shuffle1(x_cat))
x = self.double_conv2(self.pixel_shuffle2(x))
logits = self.predict_head_out(x)
att_output = torch.cat([x_att_s, x_att_c], dim=1)
att_branch_output = self.loss_att_branch(att_output)
return logits, att_branch_output
|