File size: 16,694 Bytes
d8c5c5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import der benΓΆtigten Bibliotheken\n",
    "import numpy as np\n",
    "import tensorflow as tf\n",
    "from tensorflow.keras.applications import ResNet50\n",
    "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
    "from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout\n",
    "from tensorflow.keras.models import Model\n",
    "from tensorflow.keras.optimizers import Adam\n",
    "from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Vorbereitung der Daten\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found 78 images belonging to 6 classes.\n",
      "Found 16 images belonging to 6 classes.\n"
     ]
    }
   ],
   "source": [
    "# Daten-Vorbereitung\n",
    "base_dir = 'C:\\Daten\\Studium Wirtschaftsinformatik\\Semester 6 TZ\\KI-Anwendungen\\Übungen\\Übung2\\Abschluss\\DatensÀtze\\Strohhüte'  # Pfad zum übergeordneten Ordner, der die Klassenordner enthÀlt\n",
    "datagen = ImageDataGenerator(\n",
    "    rescale=1./255,\n",
    "    rotation_range=40,\n",
    "    width_shift_range=0.2,\n",
    "    height_shift_range=0.2,\n",
    "    shear_range=0.2,\n",
    "    zoom_range=0.2,\n",
    "    horizontal_flip=True,\n",
    "    fill_mode='nearest',\n",
    "    validation_split=0.2  # Behalte die Aufteilung fΓΌr Training und Validation bei\n",
    ")\n",
    "train_generator = datagen.flow_from_directory(\n",
    "    base_dir,\n",
    "    target_size=(224, 224),  # Assuming using ResNet input dimensions\n",
    "    batch_size=32,  # Adjust according to your system capability\n",
    "    class_mode='categorical',\n",
    "    subset='training'  # Use the 'subset' argument for splitting\n",
    ")\n",
    "\n",
    "validation_generator = datagen.flow_from_directory(\n",
    "    base_dir,\n",
    "    target_size=(224, 224),\n",
    "    batch_size=32,\n",
    "    class_mode='categorical',\n",
    "    subset='validation'\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Modell Setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Modell-Setup\n",
    "base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))\n",
    "base_model.trainable = False  # Zuerst wird das Basismodell eingefroren\n",
    "\n",
    "x = GlobalAveragePooling2D()(base_model.output)\n",
    "x = Dense(1024, activation='relu')(x)\n",
    "x = Dropout(0.5)(x)  # Dropout hinzugefΓΌgt, um Overfitting zu reduzieren\n",
    "predictions = Dense(3, activation='softmax')(x)\n",
    "\n",
    "model = Model(inputs=base_model.input, outputs=predictions)\n",
    "model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Training des Models"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/20\n"
     ]
    },
    {
     "ename": "ValueError",
     "evalue": "Arguments `target` and `output` must have the same shape. Received: target.shape=(None, 6), output.shape=(None, 3)",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[4], line 2\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[38;5;66;03m# Trainieren des Modells\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m      3\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtrain_generator\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m      4\u001b[0m \u001b[43m    \u001b[49m\u001b[43msteps_per_epoch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrain_generator\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msamples\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mtrain_generator\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbatch_size\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m      5\u001b[0m \u001b[43m    \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvalidation_generator\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m      6\u001b[0m \u001b[43m    \u001b[49m\u001b[43mvalidation_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvalidation_generator\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msamples\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mvalidation_generator\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbatch_size\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m      7\u001b[0m \u001b[43m    \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m20\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m      8\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\n\u001b[0;32m      9\u001b[0m \u001b[43m        \u001b[49m\u001b[43mModelCheckpoint\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mbest_model.keras\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msave_best_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m     10\u001b[0m \u001b[43m        \u001b[49m\u001b[43mEarlyStopping\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmonitor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mval_loss\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpatience\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m     11\u001b[0m \u001b[43m        \u001b[49m\u001b[43mReduceLROnPlateau\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmonitor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mval_loss\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfactor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.2\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpatience\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m     12\u001b[0m \u001b[43m    \u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m     13\u001b[0m \u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mc:\\Users\\Jeremy Kuwegu\\anaconda3\\envs\\kia\\lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:122\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    119\u001b[0m     filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[0;32m    120\u001b[0m     \u001b[38;5;66;03m# To get the full stack trace, call:\u001b[39;00m\n\u001b[0;32m    121\u001b[0m     \u001b[38;5;66;03m# `keras.config.disable_traceback_filtering()`\u001b[39;00m\n\u001b[1;32m--> 122\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m    123\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m    124\u001b[0m     \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n",
      "File \u001b[1;32mc:\\Users\\Jeremy Kuwegu\\anaconda3\\envs\\kia\\lib\\site-packages\\keras\\src\\backend\\tensorflow\\nn.py:554\u001b[0m, in \u001b[0;36mcategorical_crossentropy\u001b[1;34m(target, output, from_logits, axis)\u001b[0m\n\u001b[0;32m    552\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m e1, e2 \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(target\u001b[38;5;241m.\u001b[39mshape, output\u001b[38;5;241m.\u001b[39mshape):\n\u001b[0;32m    553\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m e1 \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m e2 \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m e1 \u001b[38;5;241m!=\u001b[39m e2:\n\u001b[1;32m--> 554\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m    555\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mArguments `target` and `output` must have the same shape. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    556\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mReceived: \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    557\u001b[0m             \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtarget.shape=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtarget\u001b[38;5;241m.\u001b[39mshape\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, output.shape=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00moutput\u001b[38;5;241m.\u001b[39mshape\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    558\u001b[0m         )\n\u001b[0;32m    560\u001b[0m output, from_logits \u001b[38;5;241m=\u001b[39m _get_logits(\n\u001b[0;32m    561\u001b[0m     output, from_logits, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSoftmax\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcategorical_crossentropy\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    562\u001b[0m )\n\u001b[0;32m    563\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m from_logits:\n",
      "\u001b[1;31mValueError\u001b[0m: Arguments `target` and `output` must have the same shape. Received: target.shape=(None, 6), output.shape=(None, 3)"
     ]
    }
   ],
   "source": [
    "# Trainieren des Modells\n",
    "history = model.fit(\n",
    "    train_generator,\n",
    "    steps_per_epoch=train_generator.samples // train_generator.batch_size,\n",
    "    validation_data=validation_generator,\n",
    "    validation_steps=validation_generator.samples // validation_generator.batch_size,\n",
    "    epochs=20,\n",
    "    callbacks=[\n",
    "        ModelCheckpoint('best_model.keras', save_best_only=True),\n",
    "        EarlyStopping(monitor='val_loss', patience=5),\n",
    "        ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=2)\n",
    "    ]\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Fine Tuning des Modells"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/10\n",
      "\u001b[1m9/9\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m148s\u001b[0m 12s/step - accuracy: 0.7070 - loss: 1.0460 - val_accuracy: 0.6094 - val_loss: 0.9729\n",
      "Epoch 2/10\n",
      "\u001b[1m9/9\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 135ms/step - accuracy: 1.0000 - loss: 0.0769 - val_accuracy: 0.5714 - val_loss: 1.0434\n",
      "Epoch 3/10\n",
      "\u001b[1m9/9\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m100s\u001b[0m 10s/step - accuracy: 0.9677 - loss: 0.1108 - val_accuracy: 0.5469 - val_loss: 0.9639\n",
      "Epoch 4/10\n",
      "\u001b[1m9/9\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 111ms/step - accuracy: 1.0000 - loss: 0.0381 - val_accuracy: 0.7143 - val_loss: 0.9019\n",
      "Epoch 5/10\n",
      "\u001b[1m9/9\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m96s\u001b[0m 10s/step - accuracy: 0.9992 - loss: 0.0220 - val_accuracy: 0.2969 - val_loss: 1.1206\n",
      "Epoch 6/10\n",
      "\u001b[1m9/9\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 164ms/step - accuracy: 1.0000 - loss: 0.0226 - val_accuracy: 0.1429 - val_loss: 1.1233\n",
      "Epoch 7/10\n",
      "\u001b[1m9/9\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m97s\u001b[0m 10s/step - accuracy: 1.0000 - loss: 0.0062 - val_accuracy: 0.1719 - val_loss: 1.4363\n",
      "Epoch 8/10\n",
      "\u001b[1m9/9\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 103ms/step - accuracy: 0.9688 - loss: 0.0287 - val_accuracy: 0.1429 - val_loss: 1.4406\n",
      "Epoch 9/10\n",
      "\u001b[1m9/9\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m98s\u001b[0m 10s/step - accuracy: 0.9907 - loss: 0.0160 - val_accuracy: 0.2344 - val_loss: 1.4151\n",
      "Epoch 10/10\n",
      "\u001b[1m9/9\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 101ms/step - accuracy: 1.0000 - loss: 0.0038 - val_accuracy: 0.0000e+00 - val_loss: 1.6847\n"
     ]
    }
   ],
   "source": [
    "# Fine-Tuning des Modells\n",
    "for layer in base_model.layers:\n",
    "    layer.trainable = True\n",
    "\n",
    "model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])\n",
    "history_fine = model.fit(\n",
    "    train_generator,\n",
    "    steps_per_epoch=train_generator.samples // train_generator.batch_size,\n",
    "    validation_data=validation_generator,\n",
    "    validation_steps=validation_generator.samples // validation_generator.batch_size,\n",
    "    epochs=10\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Bewertung und Ergebnisse"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 3s/step - accuracy: 0.2708 - loss: 1.4508\n",
      "Performance vor dem Fine-Tuning: 0.640625\n",
      "Performance nach dem Fine-Tuning: 0.0\n"
     ]
    }
   ],
   "source": [
    "# Ergebnisse bewerten\n",
    "eval_result = model.evaluate(validation_generator, steps=validation_generator.samples // validation_generator.batch_size)\n",
    "print(f'Performance vor dem Fine-Tuning: {history.history[\"val_accuracy\"][-1]}')\n",
    "print(f'Performance nach dem Fine-Tuning: {history_fine.history[\"val_accuracy\"][-1]}')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
     ]
    }
   ],
   "source": [
    "model.save('mein_modell.h5') "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "kia",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.19"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}