Upload 3 files
Browse files- Model_Training_onepiece.ipynb +269 -0
- app.py +32 -0
- requirements.txt +18 -0
Model_Training_onepiece.ipynb
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"# Import der benΓΆtigten Bibliotheken\n",
|
10 |
+
"import numpy as np\n",
|
11 |
+
"import tensorflow as tf\n",
|
12 |
+
"from tensorflow.keras.applications import ResNet50\n",
|
13 |
+
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\n",
|
14 |
+
"from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout\n",
|
15 |
+
"from tensorflow.keras.models import Model\n",
|
16 |
+
"from tensorflow.keras.optimizers import Adam\n",
|
17 |
+
"from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "markdown",
|
22 |
+
"metadata": {},
|
23 |
+
"source": [
|
24 |
+
"Vorbereitung der Daten\n"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 2,
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [
|
32 |
+
{
|
33 |
+
"name": "stdout",
|
34 |
+
"output_type": "stream",
|
35 |
+
"text": [
|
36 |
+
"Found 78 images belonging to 6 classes.\n",
|
37 |
+
"Found 16 images belonging to 6 classes.\n"
|
38 |
+
]
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"source": [
|
42 |
+
"# Daten-Vorbereitung\n",
|
43 |
+
"base_dir = 'C:\\Daten\\Studium Wirtschaftsinformatik\\Semester 6 TZ\\KI-Anwendungen\\Γbungen\\Γbung2\\Abschluss\\DatensΓ€tze\\StrohhΓΌte' # Pfad zum ΓΌbergeordneten Ordner, der die Klassenordner enthΓ€lt\n",
|
44 |
+
"datagen = ImageDataGenerator(\n",
|
45 |
+
" rescale=1./255,\n",
|
46 |
+
" rotation_range=40,\n",
|
47 |
+
" width_shift_range=0.2,\n",
|
48 |
+
" height_shift_range=0.2,\n",
|
49 |
+
" shear_range=0.2,\n",
|
50 |
+
" zoom_range=0.2,\n",
|
51 |
+
" horizontal_flip=True,\n",
|
52 |
+
" fill_mode='nearest',\n",
|
53 |
+
" validation_split=0.2 # Behalte die Aufteilung fΓΌr Training und Validation bei\n",
|
54 |
+
")\n",
|
55 |
+
"train_generator = datagen.flow_from_directory(\n",
|
56 |
+
" base_dir,\n",
|
57 |
+
" target_size=(224, 224), # Assuming using ResNet input dimensions\n",
|
58 |
+
" batch_size=32, # Adjust according to your system capability\n",
|
59 |
+
" class_mode='categorical',\n",
|
60 |
+
" subset='training' # Use the 'subset' argument for splitting\n",
|
61 |
+
")\n",
|
62 |
+
"\n",
|
63 |
+
"validation_generator = datagen.flow_from_directory(\n",
|
64 |
+
" base_dir,\n",
|
65 |
+
" target_size=(224, 224),\n",
|
66 |
+
" batch_size=32,\n",
|
67 |
+
" class_mode='categorical',\n",
|
68 |
+
" subset='validation'\n",
|
69 |
+
")"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "markdown",
|
74 |
+
"metadata": {},
|
75 |
+
"source": [
|
76 |
+
"Modell Setup"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"execution_count": 3,
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [],
|
84 |
+
"source": [
|
85 |
+
"# Modell-Setup\n",
|
86 |
+
"base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))\n",
|
87 |
+
"base_model.trainable = False # Zuerst wird das Basismodell eingefroren\n",
|
88 |
+
"\n",
|
89 |
+
"x = GlobalAveragePooling2D()(base_model.output)\n",
|
90 |
+
"x = Dense(1024, activation='relu')(x)\n",
|
91 |
+
"x = Dropout(0.5)(x) # Dropout hinzugefΓΌgt, um Overfitting zu reduzieren\n",
|
92 |
+
"predictions = Dense(3, activation='softmax')(x)\n",
|
93 |
+
"\n",
|
94 |
+
"model = Model(inputs=base_model.input, outputs=predictions)\n",
|
95 |
+
"model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "markdown",
|
100 |
+
"metadata": {},
|
101 |
+
"source": [
|
102 |
+
"Training des Models"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 4,
|
108 |
+
"metadata": {},
|
109 |
+
"outputs": [
|
110 |
+
{
|
111 |
+
"name": "stdout",
|
112 |
+
"output_type": "stream",
|
113 |
+
"text": [
|
114 |
+
"Epoch 1/20\n"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"ename": "ValueError",
|
119 |
+
"evalue": "Arguments `target` and `output` must have the same shape. Received: target.shape=(None, 6), output.shape=(None, 3)",
|
120 |
+
"output_type": "error",
|
121 |
+
"traceback": [
|
122 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
123 |
+
"\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
|
124 |
+
"Cell \u001b[1;32mIn[4], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;66;03m# Trainieren des Modells\u001b[39;00m\n\u001b[1;32m----> 2\u001b[0m history \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrain_generator\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43msteps_per_epoch\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrain_generator\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msamples\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mtrain_generator\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbatch_size\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvalidation_generator\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 6\u001b[0m \u001b[43m \u001b[49m\u001b[43mvalidation_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvalidation_generator\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msamples\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[38;5;241;43m/\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mvalidation_generator\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbatch_size\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m20\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\n\u001b[0;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mModelCheckpoint\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mbest_model.keras\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msave_best_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 10\u001b[0m \u001b[43m \u001b[49m\u001b[43mEarlyStopping\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmonitor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mval_loss\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpatience\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 11\u001b[0m \u001b[43m \u001b[49m\u001b[43mReduceLROnPlateau\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmonitor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mval_loss\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfactor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0.2\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpatience\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 12\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m 13\u001b[0m \u001b[43m)\u001b[49m\n",
|
125 |
+
"File \u001b[1;32mc:\\Users\\Jeremy Kuwegu\\anaconda3\\envs\\kia\\lib\\site-packages\\keras\\src\\utils\\traceback_utils.py:122\u001b[0m, in \u001b[0;36mfilter_traceback.<locals>.error_handler\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 119\u001b[0m filtered_tb \u001b[38;5;241m=\u001b[39m _process_traceback_frames(e\u001b[38;5;241m.\u001b[39m__traceback__)\n\u001b[0;32m 120\u001b[0m \u001b[38;5;66;03m# To get the full stack trace, call:\u001b[39;00m\n\u001b[0;32m 121\u001b[0m \u001b[38;5;66;03m# `keras.config.disable_traceback_filtering()`\u001b[39;00m\n\u001b[1;32m--> 122\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\u001b[38;5;241m.\u001b[39mwith_traceback(filtered_tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 123\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[0;32m 124\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m filtered_tb\n",
|
126 |
+
"File \u001b[1;32mc:\\Users\\Jeremy Kuwegu\\anaconda3\\envs\\kia\\lib\\site-packages\\keras\\src\\backend\\tensorflow\\nn.py:554\u001b[0m, in \u001b[0;36mcategorical_crossentropy\u001b[1;34m(target, output, from_logits, axis)\u001b[0m\n\u001b[0;32m 552\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m e1, e2 \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(target\u001b[38;5;241m.\u001b[39mshape, output\u001b[38;5;241m.\u001b[39mshape):\n\u001b[0;32m 553\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m e1 \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m e2 \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m e1 \u001b[38;5;241m!=\u001b[39m e2:\n\u001b[1;32m--> 554\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 555\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mArguments `target` and `output` must have the same shape. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 556\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mReceived: \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 557\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtarget.shape=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtarget\u001b[38;5;241m.\u001b[39mshape\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, output.shape=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00moutput\u001b[38;5;241m.\u001b[39mshape\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 558\u001b[0m )\n\u001b[0;32m 560\u001b[0m output, from_logits \u001b[38;5;241m=\u001b[39m _get_logits(\n\u001b[0;32m 561\u001b[0m output, from_logits, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSoftmax\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcategorical_crossentropy\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 562\u001b[0m )\n\u001b[0;32m 563\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m from_logits:\n",
|
127 |
+
"\u001b[1;31mValueError\u001b[0m: Arguments `target` and `output` must have the same shape. Received: target.shape=(None, 6), output.shape=(None, 3)"
|
128 |
+
]
|
129 |
+
}
|
130 |
+
],
|
131 |
+
"source": [
|
132 |
+
"# Trainieren des Modells\n",
|
133 |
+
"history = model.fit(\n",
|
134 |
+
" train_generator,\n",
|
135 |
+
" steps_per_epoch=train_generator.samples // train_generator.batch_size,\n",
|
136 |
+
" validation_data=validation_generator,\n",
|
137 |
+
" validation_steps=validation_generator.samples // validation_generator.batch_size,\n",
|
138 |
+
" epochs=20,\n",
|
139 |
+
" callbacks=[\n",
|
140 |
+
" ModelCheckpoint('best_model.keras', save_best_only=True),\n",
|
141 |
+
" EarlyStopping(monitor='val_loss', patience=5),\n",
|
142 |
+
" ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=2)\n",
|
143 |
+
" ]\n",
|
144 |
+
")"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"cell_type": "markdown",
|
149 |
+
"metadata": {},
|
150 |
+
"source": [
|
151 |
+
"Fine Tuning des Modells"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"execution_count": null,
|
157 |
+
"metadata": {},
|
158 |
+
"outputs": [
|
159 |
+
{
|
160 |
+
"name": "stdout",
|
161 |
+
"output_type": "stream",
|
162 |
+
"text": [
|
163 |
+
"Epoch 1/10\n",
|
164 |
+
"\u001b[1m9/9\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m148s\u001b[0m 12s/step - accuracy: 0.7070 - loss: 1.0460 - val_accuracy: 0.6094 - val_loss: 0.9729\n",
|
165 |
+
"Epoch 2/10\n",
|
166 |
+
"\u001b[1m9/9\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 135ms/step - accuracy: 1.0000 - loss: 0.0769 - val_accuracy: 0.5714 - val_loss: 1.0434\n",
|
167 |
+
"Epoch 3/10\n",
|
168 |
+
"\u001b[1m9/9\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m100s\u001b[0m 10s/step - accuracy: 0.9677 - loss: 0.1108 - val_accuracy: 0.5469 - val_loss: 0.9639\n",
|
169 |
+
"Epoch 4/10\n",
|
170 |
+
"\u001b[1m9/9\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 111ms/step - accuracy: 1.0000 - loss: 0.0381 - val_accuracy: 0.7143 - val_loss: 0.9019\n",
|
171 |
+
"Epoch 5/10\n",
|
172 |
+
"\u001b[1m9/9\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m96s\u001b[0m 10s/step - accuracy: 0.9992 - loss: 0.0220 - val_accuracy: 0.2969 - val_loss: 1.1206\n",
|
173 |
+
"Epoch 6/10\n",
|
174 |
+
"\u001b[1m9/9\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 164ms/step - accuracy: 1.0000 - loss: 0.0226 - val_accuracy: 0.1429 - val_loss: 1.1233\n",
|
175 |
+
"Epoch 7/10\n",
|
176 |
+
"\u001b[1m9/9\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m97s\u001b[0m 10s/step - accuracy: 1.0000 - loss: 0.0062 - val_accuracy: 0.1719 - val_loss: 1.4363\n",
|
177 |
+
"Epoch 8/10\n",
|
178 |
+
"\u001b[1m9/9\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 103ms/step - accuracy: 0.9688 - loss: 0.0287 - val_accuracy: 0.1429 - val_loss: 1.4406\n",
|
179 |
+
"Epoch 9/10\n",
|
180 |
+
"\u001b[1m9/9\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m98s\u001b[0m 10s/step - accuracy: 0.9907 - loss: 0.0160 - val_accuracy: 0.2344 - val_loss: 1.4151\n",
|
181 |
+
"Epoch 10/10\n",
|
182 |
+
"\u001b[1m9/9\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 101ms/step - accuracy: 1.0000 - loss: 0.0038 - val_accuracy: 0.0000e+00 - val_loss: 1.6847\n"
|
183 |
+
]
|
184 |
+
}
|
185 |
+
],
|
186 |
+
"source": [
|
187 |
+
"# Fine-Tuning des Modells\n",
|
188 |
+
"for layer in base_model.layers:\n",
|
189 |
+
" layer.trainable = True\n",
|
190 |
+
"\n",
|
191 |
+
"model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])\n",
|
192 |
+
"history_fine = model.fit(\n",
|
193 |
+
" train_generator,\n",
|
194 |
+
" steps_per_epoch=train_generator.samples // train_generator.batch_size,\n",
|
195 |
+
" validation_data=validation_generator,\n",
|
196 |
+
" validation_steps=validation_generator.samples // validation_generator.batch_size,\n",
|
197 |
+
" epochs=10\n",
|
198 |
+
")"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "markdown",
|
203 |
+
"metadata": {},
|
204 |
+
"source": [
|
205 |
+
"Bewertung und Ergebnisse"
|
206 |
+
]
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"cell_type": "code",
|
210 |
+
"execution_count": null,
|
211 |
+
"metadata": {},
|
212 |
+
"outputs": [
|
213 |
+
{
|
214 |
+
"name": "stdout",
|
215 |
+
"output_type": "stream",
|
216 |
+
"text": [
|
217 |
+
"\u001b[1m2/2\u001b[0m \u001b[32mβββββββββββββββββοΏ½οΏ½ββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 3s/step - accuracy: 0.2708 - loss: 1.4508\n",
|
218 |
+
"Performance vor dem Fine-Tuning: 0.640625\n",
|
219 |
+
"Performance nach dem Fine-Tuning: 0.0\n"
|
220 |
+
]
|
221 |
+
}
|
222 |
+
],
|
223 |
+
"source": [
|
224 |
+
"# Ergebnisse bewerten\n",
|
225 |
+
"eval_result = model.evaluate(validation_generator, steps=validation_generator.samples // validation_generator.batch_size)\n",
|
226 |
+
"print(f'Performance vor dem Fine-Tuning: {history.history[\"val_accuracy\"][-1]}')\n",
|
227 |
+
"print(f'Performance nach dem Fine-Tuning: {history_fine.history[\"val_accuracy\"][-1]}')"
|
228 |
+
]
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"cell_type": "code",
|
232 |
+
"execution_count": null,
|
233 |
+
"metadata": {},
|
234 |
+
"outputs": [
|
235 |
+
{
|
236 |
+
"name": "stderr",
|
237 |
+
"output_type": "stream",
|
238 |
+
"text": [
|
239 |
+
"WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"
|
240 |
+
]
|
241 |
+
}
|
242 |
+
],
|
243 |
+
"source": [
|
244 |
+
"model.save('mein_modell.h5') "
|
245 |
+
]
|
246 |
+
}
|
247 |
+
],
|
248 |
+
"metadata": {
|
249 |
+
"kernelspec": {
|
250 |
+
"display_name": "kia",
|
251 |
+
"language": "python",
|
252 |
+
"name": "python3"
|
253 |
+
},
|
254 |
+
"language_info": {
|
255 |
+
"codemirror_mode": {
|
256 |
+
"name": "ipython",
|
257 |
+
"version": 3
|
258 |
+
},
|
259 |
+
"file_extension": ".py",
|
260 |
+
"mimetype": "text/x-python",
|
261 |
+
"name": "python",
|
262 |
+
"nbconvert_exporter": "python",
|
263 |
+
"pygments_lexer": "ipython3",
|
264 |
+
"version": "3.9.19"
|
265 |
+
}
|
266 |
+
},
|
267 |
+
"nbformat": 4,
|
268 |
+
"nbformat_minor": 2
|
269 |
+
}
|
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.preprocessing import image as keras_image
|
5 |
+
from tensorflow.keras.applications.resnet50 import preprocess_input
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
|
8 |
+
# Load your trained model
|
9 |
+
model = load_model(r'C:\Daten\Studium Wirtschaftsinformatik\Semester 6 TZ\KI-Anwendungen\Γbungen\Γbung2\Abschluss\mein_modell.h5')
|
10 |
+
|
11 |
+
def predict_character(img):
|
12 |
+
img = Image.fromarray(img.astype('uint8'), 'RGB') # Ensure the image is in RGB
|
13 |
+
img = img.resize((224, 224)) # Resize the image to the input size of the model
|
14 |
+
img_array = keras_image.img_to_array(img) # Convert the image to an array
|
15 |
+
img_array = np.expand_dims(img_array, axis=0) # Expand dimensions to match model input
|
16 |
+
img_array = preprocess_input(img_array) # Preprocess the input as expected by ResNet50
|
17 |
+
|
18 |
+
prediction = model.predict(img_array) # Predict using the model
|
19 |
+
classes = ['Chopper', 'Nami', 'Ruffy', 'Sanji', 'Usopp', 'Zoro'] # Character names as per your dataset
|
20 |
+
return {classes[i]: float(prediction[0][i]) for i in range(len(classes))} # Return the prediction in a dictionary format
|
21 |
+
|
22 |
+
# Define Gradio interface
|
23 |
+
interface = gr.Interface(
|
24 |
+
fn=predict_character,
|
25 |
+
inputs=gr.Image(), # Gradio handles resizing automatically based on the model input
|
26 |
+
outputs=gr.Label(num_top_classes=6), # Show top 3 predictions
|
27 |
+
title="One Piece Character Classifier",
|
28 |
+
description="Upload an image of a One Piece character and the classifier will predict which character it is."
|
29 |
+
)
|
30 |
+
|
31 |
+
# Launch the interface
|
32 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
blinker==1.7.0
|
2 |
+
click==8.1.7
|
3 |
+
Flask==3.0.2
|
4 |
+
Flask-Cors==4.0.0
|
5 |
+
itsdangerous==2.1.2
|
6 |
+
Jinja2==3.1.3
|
7 |
+
joblib==1.3.2
|
8 |
+
MarkupSafe==2.1.5
|
9 |
+
numpy==1.26.4
|
10 |
+
pandas==2.2.1
|
11 |
+
python-dateutil==2.8.2
|
12 |
+
pytz==2024.1
|
13 |
+
scikit-learn==1.4.1.post1
|
14 |
+
scipy==1.12.0
|
15 |
+
six==1.16.0
|
16 |
+
threadpoolctl==3.3.0
|
17 |
+
tzdata==2024.1
|
18 |
+
Werkzeug==3.0.1
|