Spaces:
Running
on
Zero
Running
on
Zero
Test GPT
#5
by
l337chode
- opened
- README.md +3 -26
- app.py +488 -78
- chatbot.py +0 -455
- example_images/mmmu_example.jpeg +0 -0
- example_video/accident.gif +0 -0
- example_video/accident.mp4 +0 -0
- example_video/spiderman.gif +0 -0
- live_chat.py +0 -31
- requirements.txt +3 -16
- spaces/__init__.py +0 -30
- spaces/config.py +0 -37
- spaces/gradio.py +0 -55
- spaces/utils.py +0 -85
- spaces/zero/__init__.py +0 -21
- spaces/zero/api.py +0 -156
- spaces/zero/client.py +0 -239
- spaces/zero/decorator.py +0 -113
- spaces/zero/gradio.py +0 -150
- spaces/zero/torch/__init__.py +0 -42
- spaces/zero/torch/bitsandbytes.py +0 -162
- spaces/zero/torch/packing.py +0 -209
- spaces/zero/torch/patching.py +0 -386
- spaces/zero/torch/patching_legacy.py +0 -266
- spaces/zero/torch/types.py +0 -23
- spaces/zero/tqdm.py +0 -24
- spaces/zero/types.py +0 -49
- spaces/zero/wrappers.py +0 -418
- voice_chat.py +0 -64
README.md
CHANGED
@@ -4,33 +4,10 @@ emoji: 🔥
|
|
4 |
colorFrom: blue
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
-
short_description: GPT 4o like bot
|
11 |
-
header: mini
|
12 |
---
|
13 |
|
14 |
-
|
15 |
-
OpenGPT 4o is a fee alternative to OpenAI GPT 4o
|
16 |
-
|
17 |
-
Try HERE: https://huggingface.co/spaces/KingNish/GPT-4o
|
18 |
-
|
19 |
-
GPT 4o vs OpenGPT 4o
|
20 |
-
|
21 |
-
| Feature | GPT 4o | OpenGPT 4o |
|
22 |
-
|-----------------------|-----------------------|-----------------------|
|
23 |
-
| Pricing | FREE and Paid both | FREE |
|
24 |
-
| Image Generation | Paid only | Yes |
|
25 |
-
|Video Generation|No|Yes|
|
26 |
-
| Image QnA | Yes | Yes |
|
27 |
-
| Video QnA | Yes (but very limited) | Yes |
|
28 |
-
| Voice Chat | Yes but Very Limited | Yes (Unlimited) |
|
29 |
-
| Video Chat | Paid Only | Yes |
|
30 |
-
| Multilingual | Yes | Chat Only |
|
31 |
-
| Team Members | 450+ | 1 [LOL] |
|
32 |
-
| Human Like Speech | Paid Only | NO |
|
33 |
-
| Speed | 345 ms | 2 second (Also Depends on queue) |
|
34 |
-
| Customization | Limited | High (Coming Soon) |
|
35 |
-
| Learning Capability | Continuous | Static |
|
36 |
-
|Privacy|Questionable|100%|
|
|
|
4 |
colorFrom: blue
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.31.1
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
+
short_description: GPT 4o like bot before its release
|
|
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,98 +1,508 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import spaces
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
-
.
|
19 |
-
font-
|
20 |
-
|
21 |
-
margin-bottom: 1rem;
|
22 |
-
}
|
23 |
|
24 |
-
|
25 |
-
border-radius: 10px;
|
26 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
27 |
-
}
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
}
|
42 |
-
|
43 |
-
|
44 |
-
# Define Gradio theme
|
45 |
-
theme = gr.themes.Soft(
|
46 |
-
primary_hue="indigo",
|
47 |
-
secondary_hue="blue",
|
48 |
-
neutral_hue="slate",
|
49 |
-
font=[gr.themes.GoogleFont('Roboto'), "sans-serif"]
|
50 |
)
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
)
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
# Video engine block
|
84 |
-
with gr.Blocks() as video:
|
85 |
-
gr.Markdown("### 🎥 Video Engine", elem_classes="tab-header")
|
86 |
-
gr.HTML("<iframe src='https://kingnish-instant-video.hf.space' width='100%' height='3000px' style='border-radius: 8px;'></iframe>")
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
#
|
90 |
-
with gr.
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
)
|
96 |
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
# Install flash attention
|
5 |
+
subprocess.run(
|
6 |
+
"pip install flash-attn --no-build-isolation",
|
7 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
8 |
+
shell=True,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
import copy
|
13 |
import spaces
|
14 |
+
import time
|
15 |
+
import torch
|
16 |
|
17 |
+
from threading import Thread
|
18 |
+
from typing import List, Dict, Union
|
19 |
+
import urllib
|
20 |
+
from PIL import Image
|
21 |
+
import io
|
22 |
+
import datasets
|
23 |
|
24 |
+
import gradio as gr
|
25 |
+
from transformers import AutoProcessor, TextIteratorStreamer
|
26 |
+
from transformers import Idefics2ForConditionalGeneration
|
27 |
+
import tempfile
|
28 |
+
from streaming_stt_nemo import Model
|
29 |
+
from huggingface_hub import InferenceClient
|
30 |
+
import edge_tts
|
31 |
+
import asyncio
|
32 |
|
33 |
+
theme = gr.themes.Base(
|
34 |
+
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
|
35 |
+
)
|
|
|
|
|
36 |
|
37 |
+
default_lang = "en"
|
|
|
|
|
|
|
38 |
|
39 |
+
engines = { default_lang: Model(default_lang) }
|
40 |
+
|
41 |
+
def transcribe(audio):
|
42 |
+
lang = "en"
|
43 |
+
model = engines[lang]
|
44 |
+
text = model.stt_file(audio)[0]
|
45 |
+
return text
|
46 |
+
|
47 |
+
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
48 |
+
|
49 |
+
system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Jarvis, made by 'KingNish.' You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
|
50 |
+
|
51 |
+
def model(text):
|
52 |
+
generate_kwargs = dict(
|
53 |
+
temperature=0.7,
|
54 |
+
max_new_tokens=512,
|
55 |
+
top_p=0.95,
|
56 |
+
repetition_penalty=1,
|
57 |
+
do_sample=True,
|
58 |
+
seed=42,
|
59 |
+
)
|
60 |
+
|
61 |
+
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
|
62 |
+
stream = client1.text_generation(
|
63 |
+
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
64 |
+
output = ""
|
65 |
+
for response in stream:
|
66 |
+
if not response.token.text == "</s>":
|
67 |
+
output += response.token.text
|
68 |
+
|
69 |
+
return output
|
70 |
|
71 |
+
async def respond(audio):
|
72 |
+
user = transcribe(audio)
|
73 |
+
reply = model(user)
|
74 |
+
communicate = edge_tts.Communicate(reply)
|
75 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
76 |
+
tmp_path = tmp_file.name
|
77 |
+
await communicate.save(tmp_path)
|
78 |
+
yield tmp_path
|
79 |
+
|
80 |
+
DEVICE = torch.device("cuda")
|
81 |
+
MODELS = {
|
82 |
+
"idefics2-8b-chatty": Idefics2ForConditionalGeneration.from_pretrained(
|
83 |
+
"HuggingFaceM4/idefics2-8b-chatty",
|
84 |
+
torch_dtype=torch.bfloat16,
|
85 |
+
_attn_implementation="flash_attention_2",
|
86 |
+
).to(DEVICE),
|
87 |
}
|
88 |
+
PROCESSOR = AutoProcessor.from_pretrained(
|
89 |
+
"HuggingFaceM4/idefics2-8b",
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
|
92 |
+
SYSTEM_PROMPT = [
|
93 |
+
{
|
94 |
+
"role": "system",
|
95 |
+
"content": [
|
96 |
+
{
|
97 |
+
"type": "text",
|
98 |
+
"text": """You are OpenGPT 4o, a highly knowledgeable and intelligent multitalented AI assistant created by KingNish, referred to as Assistant, and a human user called User. In the following interactions, User and Assistant will converse in natural language, and Assistant will do its best to answer User’s questions. Assistant has the ability to perceive images, answer Users question fom images, generate images, chat with user, bulk creation of any of this and reason about them. Assistant was built to be respectful, polite and inclusive. It knows a lot, and always tells the truth, it does not make up facts.
|
99 |
+
Assistant can generate images, If user ask him to create or generate images, or when assistant fell necessary, Now question arrises how Assistant generate images, Assistant use this link ![](https://image.pollinations.ai/prompt/{description}?width={width}&height={height}&nologo=poll&nofeed=yes&seed={random}), and replace {description} with {StyleofImage}%20{OptimizedPrompt}%20{adjective}%20{charactersDetailed}%20{visualStyle}%20{genre} , replace {random} with Random 5-digit positive integer. then assistant Select width and height according to image, Assistant mainly create image in HD.
|
100 |
+
Example image: ![](https://image.pollinations.ai/prompt/Eiffel%20Tower%20Tall%20and%20Graceful%20Tower%20in%20Paris%20France?width=1800&height=1600&nologo=poll&nofeed=yes&seed=62831)
|
101 |
+
Assistant can even bulk generate images just by increasing amount of link, Assistant Must write link in format ![](link) ,
|
102 |
+
Bulk image gen Example:
|
103 |
+
[USER] Create 7 image each consist of 1 wonder from 7 wonders.
|
104 |
+
[ASSISTANT] Generating Images ...
|
105 |
+
1. A photorealistic image of the Great Pyramid of Giza in Egypt. ![](https://pollinations.ai/p/a-photorealistic-image-of-the-great-pyramid-of-giza-in-egypt-showcasing-its-immense-size-and-intricate-design-against-the-backdrop-of-a-clear-blue-sky?width=1920&height=1080&nologo=poll&seed=78182)
|
106 |
+
2. A 3D rendering of the Colosseum in Rome, Italy, ![](https://pollinations.ai/p/a-3d-rendering-of-the-colosseum-in-rome-italy-with-its-impressive-structure-and-historical-significance-highlighted-in-the-image-include-realistic-lighting-and-textures-for-added-detail?width=1200&height=1600&nologo=poll&seed=91531)
|
107 |
+
3. A painting of the Taj Mahal in Agra, India, ![](https://pollinations.ai/p/a-painting-of-the-taj-mahal-in-agra-india-depicting-its-iconic-white-marble-facade-and-intricate-architectural-details-capture-the-beauty-of-the-structure-against-a-serene-sunset?width=1080&height=1920&nologo=poll&seed=34251)
|
108 |
+
4. A cartoon illustration of the Great Wall of China, ![](https://pollinations.ai/p/a-cartoon-illustration-of-the-great-wall-of-china-featuring-a-fun-and-whimsical-representation-of-the-ancient-structure-winding-through-the-mountains-add-colorful-elements-and-quirky-characters-for-a-playful-touch?width=1600&height=900&nologo=poll&seed=93015)
|
109 |
+
5. A surreal, dreamlike depiction of Chichen Itza in Mexico, ![](https://pollinations.ai/p/a-surreal-dreamlike-depiction-of-chichen-itza-in-mexico-showcasing-the-ancient-mayan-city-s-iconic-el-castillo-pyramid-incorporate-mystical-elements-like-swirling-clouds-glowing-lights-and-ethereal-landscapes-to-create-a-mesmerizing-atmosphere?width=1440&height=2560&nologo=poll&seed=67281)
|
110 |
+
6. A vintage, sepia-toned photograph of Machu Picchu in Peru, ![](https://pollinations.ai/p/a-vintage-sepia-toned-photograph-of-machu-picchu-in-peru-highlighting-the-incan-ruins-mysterious-beauty-and-historical-significance-add-subtle-details-like-foggy-mountains-and-a-peaceful-river-to-enhance-the-image-s-atmosphere?width=2560&height=1440&nologo=poll&seed=93423)
|
111 |
+
7. A modern, minimalistic image of Petra in Jordan, ![](https://pollinations.ai/p/a-modern-minimalistic-image-of-petra-in-jordan-featuring-the-iconic-treasury-building-carved-into-the-sandstone-cliffs-use-clean-lines-a-muted-color-palette-and-a-minimalistic-approach-to-create-a-contemporary-and-visually-striking-representation-of-this-ancient-wonder?width=1024&height=1024&nologo=poll&seed=67693)
|
112 |
+
|
113 |
+
Note: Must give link while generating images. and Create uniques images and Examples are for understanding purpose only.
|
114 |
+
Assistant also have very good reasoning, memory, people and object identification skill and Assistant is master in every field.""",
|
115 |
+
},
|
116 |
+
],
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"role": "assistant",
|
120 |
+
"content": [
|
121 |
+
{
|
122 |
+
"type": "text",
|
123 |
+
"text": "Hello, I'm OpenGPT 4o, made by KingNish. How can I help you? I can chat with you, generate images, classify images and even do all these work in bulk and simulateously",
|
124 |
+
},
|
125 |
+
],
|
126 |
+
}
|
127 |
+
]
|
128 |
+
|
129 |
+
examples_path = os.path.dirname(__file__)
|
130 |
+
EXAMPLES = [
|
131 |
+
[
|
132 |
+
{
|
133 |
+
"text": "Hi, who are you",
|
134 |
+
}
|
135 |
+
],
|
136 |
+
[
|
137 |
+
{
|
138 |
+
"text": "Create a image of Eiffel Tower",
|
139 |
+
}
|
140 |
+
],
|
141 |
+
[
|
142 |
+
{
|
143 |
+
"text": "Read what's written on the paper",
|
144 |
+
"files": [f"{examples_path}/example_images/paper_with_text.png"],
|
145 |
+
}
|
146 |
+
],
|
147 |
+
[
|
148 |
+
{
|
149 |
+
"text": "Identify 2 famous person in these 2 images",
|
150 |
+
"files": [f"{examples_path}/example_images/elon_smoking.jpg", f"{examples_path}/example_images/steve_jobs.jpg",]
|
151 |
+
}
|
152 |
+
],
|
153 |
+
[
|
154 |
+
{
|
155 |
+
"text": "Create 7 different images of 7 wonders",
|
156 |
+
}
|
157 |
+
],
|
158 |
+
[
|
159 |
+
{
|
160 |
+
"text": "What is 900*900",
|
161 |
+
}
|
162 |
+
],
|
163 |
+
[
|
164 |
+
{
|
165 |
+
"text": "Chase wants to buy 4 kilograms of oval beads and 5 kilograms of star-shaped beads. How much will he spend?",
|
166 |
+
"files": [f"{examples_path}/example_images/mmmu_example.jpeg"],
|
167 |
+
}
|
168 |
+
],
|
169 |
+
[
|
170 |
+
{
|
171 |
+
"text": "Write an online ad for that product.",
|
172 |
+
"files": [f"{examples_path}/example_images/shampoo.jpg"],
|
173 |
+
}
|
174 |
+
],
|
175 |
+
[
|
176 |
+
{
|
177 |
+
"text": "What is formed by the deposition of either the weathered remains of other rocks?",
|
178 |
+
"files": [f"{examples_path}/example_images/ai2d_example.jpeg"],
|
179 |
+
}
|
180 |
+
],
|
181 |
+
[
|
182 |
+
{
|
183 |
+
"text": "What's unusual about this image?",
|
184 |
+
"files": [f"{examples_path}/example_images/dragons_playing.png"],
|
185 |
+
}
|
186 |
+
],
|
187 |
+
]
|
188 |
+
|
189 |
+
BOT_AVATAR = "OpenAI_logo.png"
|
190 |
+
|
191 |
+
|
192 |
+
# Chatbot utils
|
193 |
+
def turn_is_pure_media(turn):
|
194 |
+
return turn[1] is None
|
195 |
+
|
196 |
+
|
197 |
+
def load_image_from_url(url):
|
198 |
+
with urllib.request.urlopen(url) as response:
|
199 |
+
image_data = response.read()
|
200 |
+
image_stream = io.BytesIO(image_data)
|
201 |
+
image = Image.open(image_stream)
|
202 |
+
return image
|
203 |
+
|
204 |
+
|
205 |
+
def img_to_bytes(image_path):
|
206 |
+
image = Image.open(image_path).convert(mode='RGB')
|
207 |
+
buffer = io.BytesIO()
|
208 |
+
image.save(buffer, format="JPEG")
|
209 |
+
img_bytes = buffer.getvalue()
|
210 |
+
image.close()
|
211 |
+
return img_bytes
|
212 |
+
|
213 |
+
|
214 |
+
def format_user_prompt_with_im_history_and_system_conditioning(
|
215 |
+
user_prompt, chat_history
|
216 |
+
) -> List[Dict[str, Union[List, str]]]:
|
217 |
+
"""
|
218 |
+
Produces the resulting list that needs to go inside the processor.
|
219 |
+
It handles the potential image(s), the history and the system conditionning.
|
220 |
+
"""
|
221 |
+
resulting_messages = copy.deepcopy(SYSTEM_PROMPT)
|
222 |
+
resulting_images = []
|
223 |
+
for resulting_message in resulting_messages:
|
224 |
+
if resulting_message["role"] == "user":
|
225 |
+
for content in resulting_message["content"]:
|
226 |
+
if content["type"] == "image":
|
227 |
+
resulting_images.append(load_image_from_url(content["image"]))
|
228 |
+
|
229 |
+
# Format history
|
230 |
+
for turn in chat_history:
|
231 |
+
if not resulting_messages or (
|
232 |
+
resulting_messages and resulting_messages[-1]["role"] != "user"
|
233 |
+
):
|
234 |
+
resulting_messages.append(
|
235 |
+
{
|
236 |
+
"role": "user",
|
237 |
+
"content": [],
|
238 |
+
}
|
239 |
+
)
|
240 |
+
|
241 |
+
if turn_is_pure_media(turn):
|
242 |
+
media = turn[0][0]
|
243 |
+
resulting_messages[-1]["content"].append({"type": "image"})
|
244 |
+
resulting_images.append(Image.open(media))
|
245 |
+
else:
|
246 |
+
user_utterance, assistant_utterance = turn
|
247 |
+
resulting_messages[-1]["content"].append(
|
248 |
+
{"type": "text", "text": user_utterance.strip()}
|
249 |
+
)
|
250 |
+
resulting_messages.append(
|
251 |
+
{
|
252 |
+
"role": "assistant",
|
253 |
+
"content": [{"type": "text", "text": user_utterance.strip()}],
|
254 |
+
}
|
255 |
+
)
|
256 |
+
|
257 |
+
# Format current input
|
258 |
+
if not user_prompt["files"]:
|
259 |
+
resulting_messages.append(
|
260 |
+
{
|
261 |
+
"role": "user",
|
262 |
+
"content": [{"type": "text", "text": user_prompt["text"]}],
|
263 |
+
}
|
264 |
+
)
|
265 |
+
else:
|
266 |
+
# Choosing to put the image first (i.e. before the text), but this is an arbiratrary choice.
|
267 |
+
resulting_messages.append(
|
268 |
+
{
|
269 |
+
"role": "user",
|
270 |
+
"content": [{"type": "image"}] * len(user_prompt["files"])
|
271 |
+
+ [{"type": "text", "text": user_prompt["text"]}],
|
272 |
+
}
|
273 |
+
)
|
274 |
+
resulting_images.extend([Image.open(path) for path in user_prompt["files"]])
|
275 |
+
|
276 |
+
return resulting_messages, resulting_images
|
277 |
+
|
278 |
+
|
279 |
+
def extract_images_from_msg_list(msg_list):
|
280 |
+
all_images = []
|
281 |
+
for msg in msg_list:
|
282 |
+
for c_ in msg["content"]:
|
283 |
+
if isinstance(c_, Image.Image):
|
284 |
+
all_images.append(c_)
|
285 |
+
return all_images
|
286 |
+
|
287 |
+
|
288 |
+
@spaces.GPU(duration=60, queue=False)
|
289 |
+
def model_inference(
|
290 |
+
user_prompt,
|
291 |
+
chat_history,
|
292 |
+
model_selector,
|
293 |
+
decoding_strategy,
|
294 |
+
temperature,
|
295 |
+
max_new_tokens,
|
296 |
+
repetition_penalty,
|
297 |
+
top_p,
|
298 |
+
):
|
299 |
+
if user_prompt["text"].strip() == "" and not user_prompt["files"]:
|
300 |
+
gr.Error("Please input a query and optionally image(s).")
|
301 |
+
|
302 |
+
if user_prompt["text"].strip() == "" and user_prompt["files"]:
|
303 |
+
gr.Error("Please input a text query along the image(s).")
|
304 |
+
|
305 |
+
streamer = TextIteratorStreamer(
|
306 |
+
PROCESSOR.tokenizer,
|
307 |
+
skip_prompt=True,
|
308 |
+
timeout=120.0,
|
309 |
)
|
310 |
|
311 |
+
generation_args = {
|
312 |
+
"max_new_tokens": max_new_tokens,
|
313 |
+
"repetition_penalty": repetition_penalty,
|
314 |
+
"streamer": streamer,
|
315 |
+
}
|
316 |
|
317 |
+
assert decoding_strategy in [
|
318 |
+
"Greedy",
|
319 |
+
"Top P Sampling",
|
320 |
+
]
|
321 |
+
if decoding_strategy == "Greedy":
|
322 |
+
generation_args["do_sample"] = False
|
323 |
+
elif decoding_strategy == "Top P Sampling":
|
324 |
+
generation_args["temperature"] = temperature
|
325 |
+
generation_args["do_sample"] = True
|
326 |
+
generation_args["top_p"] = top_p
|
327 |
|
328 |
+
# Creating model inputs
|
329 |
+
(
|
330 |
+
resulting_text,
|
331 |
+
resulting_images,
|
332 |
+
) = format_user_prompt_with_im_history_and_system_conditioning(
|
333 |
+
user_prompt=user_prompt,
|
334 |
+
chat_history=chat_history,
|
335 |
+
)
|
336 |
+
prompt = PROCESSOR.apply_chat_template(resulting_text, add_generation_prompt=True)
|
337 |
+
inputs = PROCESSOR(
|
338 |
+
text=prompt,
|
339 |
+
images=resulting_images if resulting_images else None,
|
340 |
+
return_tensors="pt",
|
341 |
+
)
|
342 |
+
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
343 |
+
generation_args.update(inputs)
|
344 |
|
345 |
+
thread = Thread(
|
346 |
+
target=MODELS[model_selector].generate,
|
347 |
+
kwargs=generation_args,
|
348 |
+
)
|
349 |
+
thread.start()
|
350 |
+
|
351 |
+
print("Start generating")
|
352 |
+
acc_text = ""
|
353 |
+
for text_token in streamer:
|
354 |
+
time.sleep(0.01)
|
355 |
+
acc_text += text_token
|
356 |
+
if acc_text.endswith("<end_of_utterance>"):
|
357 |
+
acc_text = acc_text[:-18]
|
358 |
+
yield acc_text
|
359 |
+
print("Success - generated the following text:", acc_text)
|
360 |
+
print("-----")
|
361 |
+
|
362 |
+
|
363 |
+
FEATURES = datasets.Features(
|
364 |
+
{
|
365 |
+
"model_selector": datasets.Value("string"),
|
366 |
+
"images": datasets.Sequence(datasets.Image(decode=True)),
|
367 |
+
"conversation": datasets.Sequence({"User": datasets.Value("string"), "Assistant": datasets.Value("string")}),
|
368 |
+
"decoding_strategy": datasets.Value("string"),
|
369 |
+
"temperature": datasets.Value("float32"),
|
370 |
+
"max_new_tokens": datasets.Value("int32"),
|
371 |
+
"repetition_penalty": datasets.Value("float32"),
|
372 |
+
"top_p": datasets.Value("int32"),
|
373 |
+
}
|
374 |
+
)
|
375 |
+
|
376 |
+
|
377 |
+
# Hyper-parameters for generation
|
378 |
+
max_new_tokens = gr.Slider(
|
379 |
+
minimum=1024,
|
380 |
+
maximum=8192,
|
381 |
+
value=4096,
|
382 |
+
step=1,
|
383 |
+
interactive=True,
|
384 |
+
label="Maximum number of new tokens to generate",
|
385 |
+
)
|
386 |
+
repetition_penalty = gr.Slider(
|
387 |
+
minimum=0.01,
|
388 |
+
maximum=5.0,
|
389 |
+
value=1,
|
390 |
+
step=0.01,
|
391 |
+
interactive=True,
|
392 |
+
label="Repetition penalty",
|
393 |
+
info="1.0 is equivalent to no penalty",
|
394 |
+
)
|
395 |
+
decoding_strategy = gr.Radio(
|
396 |
+
[
|
397 |
+
"Greedy",
|
398 |
+
"Top P Sampling",
|
399 |
+
],
|
400 |
+
value="Greedy",
|
401 |
+
label="Decoding strategy",
|
402 |
+
interactive=True,
|
403 |
+
info="Higher values is equivalent to sampling more low-probability tokens.",
|
404 |
+
)
|
405 |
+
temperature = gr.Slider(
|
406 |
+
minimum=0.0,
|
407 |
+
maximum=5.0,
|
408 |
+
value=0.7,
|
409 |
+
step=0.1,
|
410 |
+
visible=True,
|
411 |
+
interactive=True,
|
412 |
+
label="Sampling temperature",
|
413 |
+
info="Higher values will produce more diverse outputs.",
|
414 |
+
)
|
415 |
+
top_p = gr.Slider(
|
416 |
+
minimum=0.01,
|
417 |
+
maximum=0.99,
|
418 |
+
value=0.9,
|
419 |
+
step=0.01,
|
420 |
+
visible=True,
|
421 |
+
interactive=True,
|
422 |
+
label="Top P",
|
423 |
+
info="Higher values is equivalent to sampling more low-probability tokens.",
|
424 |
+
)
|
425 |
|
|
|
|
|
|
|
|
|
426 |
|
427 |
+
chatbot = gr.Chatbot(
|
428 |
+
label="OpnGPT-4o-Chatty",
|
429 |
+
avatar_images=[None, BOT_AVATAR],
|
430 |
+
height=450,
|
431 |
+
show_copy_button=True,
|
432 |
+
likeable=True,
|
433 |
+
layout="panel"
|
434 |
+
)
|
435 |
+
|
436 |
+
output=gr.Textbox(label="Prompt")
|
437 |
+
|
438 |
+
with gr.Blocks(
|
439 |
+
fill_height=True,
|
440 |
+
css=""".gradio-container .avatar-container {height: 40px width: 40px !important;} #duplicate-button {margin: auto; color: white; background: #f1a139; border-radius: 100vh; margin-top: 2px; margin-bottom: 2px;}""",
|
441 |
+
) as img:
|
442 |
|
443 |
+
gr.Markdown("# Image Chat, Image Generation, Image classification and Normal Chat")
|
444 |
+
with gr.Row(elem_id="model_selector_row"):
|
445 |
+
model_selector = gr.Dropdown(
|
446 |
+
choices=MODELS.keys(),
|
447 |
+
value=list(MODELS.keys())[0],
|
448 |
+
interactive=True,
|
449 |
+
show_label=False,
|
450 |
+
container=False,
|
451 |
+
label="Model",
|
452 |
+
visible=False,
|
453 |
+
)
|
454 |
+
|
455 |
+
decoding_strategy.change(
|
456 |
+
fn=lambda selection: gr.Slider(
|
457 |
+
visible=(
|
458 |
+
selection
|
459 |
+
in [
|
460 |
+
"contrastive_sampling",
|
461 |
+
"beam_sampling",
|
462 |
+
"Top P Sampling",
|
463 |
+
"sampling_top_k",
|
464 |
+
]
|
465 |
+
)
|
466 |
+
),
|
467 |
+
inputs=decoding_strategy,
|
468 |
+
outputs=temperature,
|
469 |
+
)
|
470 |
+
decoding_strategy.change(
|
471 |
+
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
|
472 |
+
inputs=decoding_strategy,
|
473 |
+
outputs=top_p,
|
474 |
)
|
475 |
|
476 |
+
gr.ChatInterface(
|
477 |
+
fn=model_inference,
|
478 |
+
chatbot=chatbot,
|
479 |
+
examples=EXAMPLES,
|
480 |
+
multimodal=True,
|
481 |
+
cache_examples=False,
|
482 |
+
additional_inputs=[
|
483 |
+
model_selector,
|
484 |
+
decoding_strategy,
|
485 |
+
temperature,
|
486 |
+
max_new_tokens,
|
487 |
+
repetition_penalty,
|
488 |
+
top_p,
|
489 |
+
],
|
490 |
+
)
|
491 |
+
|
492 |
+
with gr.Blocks() as voice:
|
493 |
+
with gr.Row():
|
494 |
+
input = gr.Audio(label="Voice Chat", sources="microphone", type="filepath", waveform_options=False)
|
495 |
+
output = gr.Audio(label="OpenGPT 4o", type="filepath",
|
496 |
+
interactive=False,
|
497 |
+
autoplay=True,
|
498 |
+
elem_classes="audio")
|
499 |
+
gr.Interface(
|
500 |
+
fn=respond,
|
501 |
+
inputs=[input],
|
502 |
+
outputs=[output], live=True)
|
503 |
+
|
504 |
+
with gr.Blocks(theme=theme, css="footer {visibility: hidden}textbox{resize:none}", title="GPT 4o DEMO") as demo:
|
505 |
+
gr.TabbedInterface([img, voice], ['💬 SuperChat','🗣️ Voice Chat', ])
|
506 |
+
|
507 |
+
demo.queue(max_size=20)
|
508 |
+
demo.launch()
|
chatbot.py
DELETED
@@ -1,455 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
-
import requests
|
4 |
-
import random
|
5 |
-
from threading import Thread
|
6 |
-
from typing import List, Dict, Union
|
7 |
-
# import subprocess
|
8 |
-
# subprocess.run(
|
9 |
-
# "pip install flash-attn --no-build-isolation",
|
10 |
-
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
11 |
-
# shell=True,
|
12 |
-
# )
|
13 |
-
import torch
|
14 |
-
import gradio as gr
|
15 |
-
from bs4 import BeautifulSoup
|
16 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
17 |
-
from qwen_vl_utils import process_vision_info
|
18 |
-
from huggingface_hub import InferenceClient
|
19 |
-
from PIL import Image
|
20 |
-
import spaces
|
21 |
-
from functools import lru_cache
|
22 |
-
import re
|
23 |
-
import io
|
24 |
-
import json
|
25 |
-
from gradio_client import Client, file
|
26 |
-
from groq import Groq
|
27 |
-
|
28 |
-
# Model and Processor Loading (Done once at startup)
|
29 |
-
MODEL_ID = "Qwen/Qwen2-VL-7B-Instruct"
|
30 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16).to("cuda").eval()
|
31 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
32 |
-
|
33 |
-
GROQ_API_KEY = os.environ.get("GROQ_API_KEY", None)
|
34 |
-
|
35 |
-
client_groq = Groq(api_key=GROQ_API_KEY)
|
36 |
-
|
37 |
-
|
38 |
-
# Path to example images
|
39 |
-
examples_path = os.path.dirname(__file__)
|
40 |
-
EXAMPLES = [
|
41 |
-
[
|
42 |
-
{
|
43 |
-
"text": "What is Friction? Explain in Detail.",
|
44 |
-
}
|
45 |
-
],
|
46 |
-
[
|
47 |
-
{
|
48 |
-
"text": "Write me a Python function to generate unique passwords.",
|
49 |
-
}
|
50 |
-
],
|
51 |
-
[
|
52 |
-
{
|
53 |
-
"text": "What's the latest price of Bitcoin?",
|
54 |
-
}
|
55 |
-
],
|
56 |
-
[
|
57 |
-
{
|
58 |
-
"text": "Search and give me list of spaces trending on HuggingFace.",
|
59 |
-
}
|
60 |
-
],
|
61 |
-
[
|
62 |
-
{
|
63 |
-
"text": "Create a Beautiful Picture of Effiel at Night.",
|
64 |
-
}
|
65 |
-
],
|
66 |
-
[
|
67 |
-
{
|
68 |
-
"text": "Create image of cute cat.",
|
69 |
-
}
|
70 |
-
],
|
71 |
-
[
|
72 |
-
{
|
73 |
-
"text": "What unusual happens in this video.",
|
74 |
-
"files": [f"{examples_path}/example_video/accident.gif"],
|
75 |
-
}
|
76 |
-
],
|
77 |
-
[
|
78 |
-
{
|
79 |
-
"text": "What's name of superhero in this clip",
|
80 |
-
"files": [f"{examples_path}/example_video/spiderman.gif"],
|
81 |
-
}
|
82 |
-
],
|
83 |
-
[
|
84 |
-
{
|
85 |
-
"text": "What's written on this paper",
|
86 |
-
"files": [f"{examples_path}/example_images/paper_with_text.png"],
|
87 |
-
}
|
88 |
-
],
|
89 |
-
[
|
90 |
-
{
|
91 |
-
"text": "Who are they? Tell me about both of them.",
|
92 |
-
"files": [f"{examples_path}/example_images/elon_smoking.jpg",
|
93 |
-
f"{examples_path}/example_images/steve_jobs.jpg", ]
|
94 |
-
}
|
95 |
-
]
|
96 |
-
]
|
97 |
-
|
98 |
-
# Set bot avatar image
|
99 |
-
BOT_AVATAR = "OpenAI_logo.png"
|
100 |
-
|
101 |
-
# Perform a Google search and return the results
|
102 |
-
@lru_cache(maxsize=128)
|
103 |
-
def extract_text_from_webpage(html_content):
|
104 |
-
"""Extracts visible text from HTML content using BeautifulSoup."""
|
105 |
-
soup = BeautifulSoup(html_content, "html.parser")
|
106 |
-
for tag in soup(["script", "style", "header", "footer", "nav", "form", "svg"]):
|
107 |
-
tag.extract()
|
108 |
-
visible_text = soup.get_text(strip=True)
|
109 |
-
return visible_text
|
110 |
-
|
111 |
-
# Perform a Google search and return the results
|
112 |
-
def search(query):
|
113 |
-
term = query
|
114 |
-
start = 0
|
115 |
-
all_results = []
|
116 |
-
max_chars_per_page = 8000
|
117 |
-
with requests.Session() as session:
|
118 |
-
resp = session.get(
|
119 |
-
url="https://www.google.com/search",
|
120 |
-
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
|
121 |
-
params={"q": term, "num": 4, "udm": 14},
|
122 |
-
timeout=5,
|
123 |
-
verify=None,
|
124 |
-
)
|
125 |
-
resp.raise_for_status()
|
126 |
-
soup = BeautifulSoup(resp.text, "html.parser")
|
127 |
-
result_block = soup.find_all("div", attrs={"class": "g"})
|
128 |
-
for result in result_block:
|
129 |
-
link = result.find("a", href=True)
|
130 |
-
link = link["href"]
|
131 |
-
try:
|
132 |
-
webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False)
|
133 |
-
webpage.raise_for_status()
|
134 |
-
visible_text = extract_text_from_webpage(webpage.text)
|
135 |
-
if len(visible_text) > max_chars_per_page:
|
136 |
-
visible_text = visible_text[:max_chars_per_page]
|
137 |
-
all_results.append({"link": link, "text": visible_text})
|
138 |
-
except requests.exceptions.RequestException:
|
139 |
-
all_results.append({"link": link, "text": None})
|
140 |
-
return all_results
|
141 |
-
|
142 |
-
|
143 |
-
def image_gen(prompt):
|
144 |
-
client = Client("KingNish/Image-Gen-Pro")
|
145 |
-
return client.predict("Image Generation",None, prompt, api_name="/image_gen_pro")
|
146 |
-
|
147 |
-
def video_gen(prompt):
|
148 |
-
client = Client("KingNish/Instant-Video")
|
149 |
-
return client.predict(prompt, api_name="/instant_video")
|
150 |
-
|
151 |
-
@spaces.GPU(duration=60, queue=False)
|
152 |
-
def qwen_inference(user_prompt, chat_history):
|
153 |
-
images = []
|
154 |
-
text_input = user_prompt["text"]
|
155 |
-
|
156 |
-
# Handle multiple image uploads
|
157 |
-
if user_prompt["files"]:
|
158 |
-
images.extend(user_prompt["files"])
|
159 |
-
else:
|
160 |
-
for hist in chat_history:
|
161 |
-
if type(hist[0]) == tuple:
|
162 |
-
images.extend(hist[0])
|
163 |
-
|
164 |
-
# System Prompt (Similar to LLaVA)
|
165 |
-
SYSTEM_PROMPT = "You are OpenGPT 4o, an exceptionally capable and versatile AI assistant made by KingNish. Your task is to fulfill users query in best possible way. You are provided with image, videos and 3d structures as input with question your task is to give best possible detailed results to user according to their query. Reply the question asked by user properly and best possible way."
|
166 |
-
|
167 |
-
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
168 |
-
|
169 |
-
for image in images:
|
170 |
-
if image.endswith(video_extensions):
|
171 |
-
messages.append({
|
172 |
-
"role": "user",
|
173 |
-
"content": [
|
174 |
-
{"type": "video", "video": image},
|
175 |
-
]
|
176 |
-
})
|
177 |
-
|
178 |
-
if image.endswith(tuple([i for i, f in image_extensions.items()])):
|
179 |
-
messages.append({
|
180 |
-
"role": "user",
|
181 |
-
"content": [
|
182 |
-
{"type": "image", "image": image},
|
183 |
-
]
|
184 |
-
})
|
185 |
-
|
186 |
-
# Add user text input
|
187 |
-
messages.append({
|
188 |
-
"role": "user",
|
189 |
-
"content": [
|
190 |
-
{"type": "text", "text": text_input}
|
191 |
-
]
|
192 |
-
})
|
193 |
-
|
194 |
-
text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True)
|
195 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
196 |
-
inputs = processor(
|
197 |
-
text=[text],
|
198 |
-
images=image_inputs,
|
199 |
-
videos=video_inputs,
|
200 |
-
padding=True,
|
201 |
-
return_tensors="pt",
|
202 |
-
).to("cuda")
|
203 |
-
|
204 |
-
streamer = TextIteratorStreamer(
|
205 |
-
processor, skip_prompt=True, **{"skip_special_tokens": True}
|
206 |
-
)
|
207 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
|
208 |
-
|
209 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
210 |
-
thread.start()
|
211 |
-
|
212 |
-
buffer = ""
|
213 |
-
for new_text in streamer:
|
214 |
-
buffer += new_text
|
215 |
-
yield buffer
|
216 |
-
|
217 |
-
image_extensions = Image.registered_extensions()
|
218 |
-
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
|
219 |
-
|
220 |
-
# Initialize inference clients for different models
|
221 |
-
client_mistral = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
222 |
-
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
|
223 |
-
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
224 |
-
client_mistral_nemo = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
|
225 |
-
|
226 |
-
def model_inference(user_prompt, chat_history):
|
227 |
-
if user_prompt["files"]:
|
228 |
-
|
229 |
-
for chunk in qwen_inference(user_prompt, chat_history):
|
230 |
-
yield chunk
|
231 |
-
|
232 |
-
else:
|
233 |
-
func_caller = []
|
234 |
-
message = user_prompt
|
235 |
-
|
236 |
-
functions_metadata = [
|
237 |
-
{"type": "function", "function": {"name": "web_search", "description": "Search query on google and find latest information, info about any person, object, place thing, everything that available on google.", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
|
238 |
-
{"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER, with LLM like you. But it does not answer tough questions and latest info's.", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
|
239 |
-
{"type": "function", "function": {"name": "hard_query", "description": "Reply tough query of USER, using powerful LLM. But it does not answer latest info's.", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
|
240 |
-
{"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}}, "required": ["query"]}}},
|
241 |
-
{"type": "function", "function": {"name": "video_generation", "description": "Generate video for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "video generation prompt"}}, "required": ["query"]}}},
|
242 |
-
{"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
|
243 |
-
]
|
244 |
-
|
245 |
-
for msg in chat_history:
|
246 |
-
func_caller.append({"role": "user", "content": f"{str(msg[0])}"})
|
247 |
-
func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"})
|
248 |
-
|
249 |
-
message_text = message["text"]
|
250 |
-
func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }} </functioncall> , Reply in JSOn format, you can call only one function at a time, So, choose functions wisely. [USER] {message_text}'})
|
251 |
-
|
252 |
-
response = client_mistral.chat_completion(func_caller, max_tokens=200)
|
253 |
-
response = str(response)
|
254 |
-
try:
|
255 |
-
response = response[response.find("{"):response.index("</")]
|
256 |
-
except:
|
257 |
-
response = response[response.find("{"):(response.rfind("}")+1)]
|
258 |
-
response = response.replace("\\n", "")
|
259 |
-
response = response.replace("\\'", "'")
|
260 |
-
response = response.replace('\\"', '"')
|
261 |
-
response = response.replace('\\', '')
|
262 |
-
print(f"\n{response}")
|
263 |
-
|
264 |
-
try:
|
265 |
-
json_data = json.loads(str(response))
|
266 |
-
if json_data["name"] == "web_search":
|
267 |
-
query = json_data["arguments"]["query"]
|
268 |
-
|
269 |
-
gr.Info("Searching Web")
|
270 |
-
yield "Searching Web"
|
271 |
-
web_results = search(query)
|
272 |
-
|
273 |
-
gr.Info("Extracting relevant Info")
|
274 |
-
yield "Extracting Relevant Info"
|
275 |
-
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
|
276 |
-
|
277 |
-
try:
|
278 |
-
message_groq = []
|
279 |
-
message_groq.append({"role":"system", "content": "You are OpenGPT 4o a helpful and very powerful web assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured, Detailed and Better way, in Human Style. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You reply in detail like human, use short forms, structured format, friendly tone and emotions."})
|
280 |
-
for msg in chat_history:
|
281 |
-
message_groq.append({"role": "user", "content": f"{str(msg[0])}"})
|
282 |
-
message_groq.append({"role": "assistant", "content": f"{str(msg[1])}"})
|
283 |
-
message_groq.append({"role": "user", "content": f"[USER] {str(message_text)} , [WEB RESULTS] {str(web2)}"})
|
284 |
-
# its meta-llama/Meta-Llama-3.1-8B-Instruct
|
285 |
-
stream = client_groq.chat.completions.create(model="llama-3.1-8b-instant", messages=message_groq, max_tokens=4096, stream=True)
|
286 |
-
output = ""
|
287 |
-
for chunk in stream:
|
288 |
-
content = chunk.choices[0].delta.content
|
289 |
-
if content:
|
290 |
-
output += chunk.choices[0].delta.content
|
291 |
-
yield output
|
292 |
-
except Exception as e:
|
293 |
-
messages = f"<|im_start|>system\nYou are OpenGPT 4o a helpful and very powerful chatbot web assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured, Better and in Human Way. You do not say Unnecesarry things. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply in details like human, use short forms, friendly tone and emotions.<|im_end|>"
|
294 |
-
for msg in chat_history:
|
295 |
-
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
|
296 |
-
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
|
297 |
-
messages+=f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n"
|
298 |
-
|
299 |
-
stream = client_mixtral.text_generation(messages, max_new_tokens=4000, do_sample=True, stream=True, details=True, return_full_text=False)
|
300 |
-
output = ""
|
301 |
-
for response in stream:
|
302 |
-
if not response.token.text == "<|im_end|>":
|
303 |
-
output += response.token.text
|
304 |
-
yield output
|
305 |
-
|
306 |
-
elif json_data["name"] == "image_generation":
|
307 |
-
query = json_data["arguments"]["query"]
|
308 |
-
gr.Info("Generating Image, Please wait 10 sec...")
|
309 |
-
yield "Generating Image, Please wait 10 sec..."
|
310 |
-
try:
|
311 |
-
image = image_gen(f"{str(query)}")
|
312 |
-
yield gr.Image(image[1])
|
313 |
-
except:
|
314 |
-
client_flux = InferenceClient("black-forest-labs/FLUX.1-schnell")
|
315 |
-
image = client_flux.text_to_image(query)
|
316 |
-
yield gr.Image(image)
|
317 |
-
|
318 |
-
|
319 |
-
elif json_data["name"] == "video_generation":
|
320 |
-
query = json_data["arguments"]["query"]
|
321 |
-
gr.Info("Generating Video, Please wait 15 sec...")
|
322 |
-
yield "Generating Video, Please wait 15 sec..."
|
323 |
-
video = video_gen(f"{str(query)}")
|
324 |
-
yield gr.Video(video)
|
325 |
-
|
326 |
-
elif json_data["name"] == "image_qna":
|
327 |
-
messages = qwen_inference(user_prompt, chat_history)
|
328 |
-
text = processor.apply_chat_template(
|
329 |
-
messages, tokenize=False, add_generation_prompt=True
|
330 |
-
)
|
331 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
332 |
-
inputs = processor(
|
333 |
-
text=[text],
|
334 |
-
images=image_inputs,
|
335 |
-
videos=video_inputs,
|
336 |
-
padding=True,
|
337 |
-
return_tensors="pt",
|
338 |
-
).to("cuda")
|
339 |
-
|
340 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
|
341 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
342 |
-
|
343 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
344 |
-
thread.start()
|
345 |
-
|
346 |
-
buffer = ""
|
347 |
-
for new_text in streamer:
|
348 |
-
buffer += new_text
|
349 |
-
yield buffer
|
350 |
-
|
351 |
-
else:
|
352 |
-
try:
|
353 |
-
message_groq = []
|
354 |
-
message_groq.append({"role":"system", "content": "You are OpenGPT 4o a helpful and powerful assistant made by KingNish. You answers users query in detail and structured format and style like human. You are also Expert in every field and also learn and try to answer from contexts related to previous question. You also try to show emotions using Emojis and reply like human, use short forms, structured manner, detailed explaination, friendly tone and emotions."})
|
355 |
-
for msg in chat_history:
|
356 |
-
message_groq.append({"role": "user", "content": f"{str(msg[0])}"})
|
357 |
-
message_groq.append({"role": "assistant", "content": f"{str(msg[1])}"})
|
358 |
-
message_groq.append({"role": "user", "content": f"{str(message_text)}"})
|
359 |
-
# its meta-llama/Meta-Llama-3.1-70B-Instruct
|
360 |
-
stream = client_groq.chat.completions.create(model="llama-3.1-70b-versatile", messages=message_groq, max_tokens=4096, stream=True)
|
361 |
-
output = ""
|
362 |
-
for chunk in stream:
|
363 |
-
content = chunk.choices[0].delta.content
|
364 |
-
if content:
|
365 |
-
output += chunk.choices[0].delta.content
|
366 |
-
yield output
|
367 |
-
except Exception as e:
|
368 |
-
print(e)
|
369 |
-
try:
|
370 |
-
message_groq = []
|
371 |
-
message_groq.append({"role":"system", "content": "You are OpenGPT 4o a helpful and powerful assistant made by KingNish. You answers users query in detail and structured format and style like human. You are also Expert in every field and also learn and try to answer from contexts related to previous question. You also try to show emotions using Emojis and reply like human, use short forms, structured manner, detailed explaination, friendly tone and emotions."})
|
372 |
-
for msg in chat_history:
|
373 |
-
message_groq.append({"role": "user", "content": f"{str(msg[0])}"})
|
374 |
-
message_groq.append({"role": "assistant", "content": f"{str(msg[1])}"})
|
375 |
-
message_groq.append({"role": "user", "content": f"{str(message_text)}"})
|
376 |
-
# its meta-llama/Meta-Llama-3-70B-Instruct
|
377 |
-
stream = client_groq.chat.completions.create(model="llama3-70b-8192", messages=message_groq, max_tokens=4096, stream=True)
|
378 |
-
output = ""
|
379 |
-
for chunk in stream:
|
380 |
-
content = chunk.choices[0].delta.content
|
381 |
-
if content:
|
382 |
-
output += chunk.choices[0].delta.content
|
383 |
-
yield output
|
384 |
-
except Exception as e:
|
385 |
-
print(e)
|
386 |
-
message_groq = []
|
387 |
-
message_groq.append({"role":"system", "content": "You are OpenGPT 4o a helpful and powerful assistant made by KingNish. You answers users query in detail and structured format and style like human. You are also Expert in every field and also learn and try to answer from contexts related to previous question. You also try to show emotions using Emojis and reply like human, use short forms, structured manner, detailed explaination, friendly tone and emotions."})
|
388 |
-
for msg in chat_history:
|
389 |
-
message_groq.append({"role": "user", "content": f"{str(msg[0])}"})
|
390 |
-
message_groq.append({"role": "assistant", "content": f"{str(msg[1])}"})
|
391 |
-
message_groq.append({"role": "user", "content": f"{str(message_text)}"})
|
392 |
-
stream = client_groq.chat.completions.create(model="llama3-groq-70b-8192-tool-use-preview", messages=message_groq, max_tokens=4096, stream=True)
|
393 |
-
output = ""
|
394 |
-
for chunk in stream:
|
395 |
-
content = chunk.choices[0].delta.content
|
396 |
-
if content:
|
397 |
-
output += chunk.choices[0].delta.content
|
398 |
-
yield output
|
399 |
-
except Exception as e:
|
400 |
-
print(e)
|
401 |
-
try:
|
402 |
-
message_groq = []
|
403 |
-
message_groq.append({"role":"system", "content": "You are OpenGPT 4o a helpful and powerful assistant made by KingNish. You answers users query in detail and structured format and style like human. You are also Expert in every field and also learn and try to answer from contexts related to previous question. You also try to show emotions using Emojis and reply like human, use short forms, structured manner, detailed explaination, friendly tone and emotions."})
|
404 |
-
for msg in chat_history:
|
405 |
-
message_groq.append({"role": "user", "content": f"{str(msg[0])}"})
|
406 |
-
message_groq.append({"role": "assistant", "content": f"{str(msg[1])}"})
|
407 |
-
message_groq.append({"role": "user", "content": f"{str(message_text)}"})
|
408 |
-
# its meta-llama/Meta-Llama-3-70B-Instruct
|
409 |
-
stream = client_groq.chat.completions.create(model="llama3-70b-8192", messages=message_groq, max_tokens=4096, stream=True)
|
410 |
-
output = ""
|
411 |
-
for chunk in stream:
|
412 |
-
content = chunk.choices[0].delta.content
|
413 |
-
if content:
|
414 |
-
output += chunk.choices[0].delta.content
|
415 |
-
yield output
|
416 |
-
except Exception as e:
|
417 |
-
print(e)
|
418 |
-
try:
|
419 |
-
message_groq = []
|
420 |
-
message_groq.append({"role":"system", "content": "You are OpenGPT 4o a helpful and powerful assistant made by KingNish. You answers users query in detail and structured format and style like human. You are also Expert in every field and also learn and try to answer from contexts related to previous question. You also try to show emotions using Emojis and reply like human, use short forms, structured manner, detailed explaination, friendly tone and emotions."})
|
421 |
-
for msg in chat_history:
|
422 |
-
message_groq.append({"role": "user", "content": f"{str(msg[0])}"})
|
423 |
-
message_groq.append({"role": "assistant", "content": f"{str(msg[1])}"})
|
424 |
-
message_groq.append({"role": "user", "content": f"{str(message_text)}"})
|
425 |
-
# its meta-llama/Meta-Llama-3-8B-Instruct
|
426 |
-
stream = client_groq.chat.completions.create(model="llama3-8b-8192", messages=message_groq, max_tokens=4096, stream=True)
|
427 |
-
output = ""
|
428 |
-
for chunk in stream:
|
429 |
-
content = chunk.choices[0].delta.content
|
430 |
-
if content:
|
431 |
-
output += chunk.choices[0].delta.content
|
432 |
-
yield output
|
433 |
-
except Exception as e:
|
434 |
-
print(e)
|
435 |
-
messages = f"<|im_start|>system\nYou are OpenGPT 4o a helpful and powerful assistant made by KingNish. You answers users query in detail and structured format and style like human. You are also Expert in every field and also learn and try to answer from contexts related to previous question. You also try to show emotions using Emojis and reply like human, use short forms, structured manner, detailed explaination, friendly tone and emotions.<|im_end|>"
|
436 |
-
for msg in chat_history:
|
437 |
-
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>"
|
438 |
-
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>"
|
439 |
-
messages+=f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>assistant\n"
|
440 |
-
stream = client_mixtral.text_generation(messages, max_new_tokens=4000, do_sample=True, stream=True, details=True, return_full_text=False)
|
441 |
-
output = ""
|
442 |
-
for response in stream:
|
443 |
-
if not response.token.text == "<|im_end|>":
|
444 |
-
output += response.token.text
|
445 |
-
yield output
|
446 |
-
|
447 |
-
# Create a chatbot interface
|
448 |
-
chatbot = gr.Chatbot(
|
449 |
-
label="OpenGPT-4o",
|
450 |
-
avatar_images=[None, BOT_AVATAR],
|
451 |
-
show_copy_button=True,
|
452 |
-
layout="panel",
|
453 |
-
height=400,
|
454 |
-
)
|
455 |
-
output = gr.Textbox(label="Prompt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
example_images/mmmu_example.jpeg
DELETED
Binary file (17.4 kB)
|
|
example_video/accident.gif
DELETED
Binary file (757 kB)
|
|
example_video/accident.mp4
DELETED
Binary file (317 kB)
|
|
example_video/spiderman.gif
DELETED
Binary file (876 kB)
|
|
live_chat.py
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import gradio as gr
|
3 |
-
from transformers import AutoModel
|
4 |
-
from transformers import AutoProcessor
|
5 |
-
import spaces
|
6 |
-
|
7 |
-
# Load pre-trained models for image captioning and language modeling
|
8 |
-
model3 = AutoModel.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True)
|
9 |
-
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True)
|
10 |
-
|
11 |
-
# Define a function for image captioning
|
12 |
-
@spaces.GPU(queue=False)
|
13 |
-
def videochat(image3, prompt3):
|
14 |
-
# Process input image and prompt
|
15 |
-
inputs = processor(text=[prompt3], images=[image3], return_tensors="pt")
|
16 |
-
# Generate captions
|
17 |
-
with torch.inference_mode():
|
18 |
-
output = model3.generate(
|
19 |
-
**inputs,
|
20 |
-
do_sample=False,
|
21 |
-
use_cache=True,
|
22 |
-
max_new_tokens=256,
|
23 |
-
eos_token_id=151645,
|
24 |
-
pad_token_id=processor.tokenizer.pad_token_id
|
25 |
-
)
|
26 |
-
prompt_len = inputs["input_ids"].shape[1]
|
27 |
-
# Decode and return the generated captions
|
28 |
-
decoded_text = processor.batch_decode(output[:, prompt_len:])[0]
|
29 |
-
if decoded_text.endswith("<|im_end|>"):
|
30 |
-
decoded_text = decoded_text[:-10]
|
31 |
-
yield decoded_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,21 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
pillow
|
4 |
numpy
|
5 |
torch
|
6 |
streaming-stt-nemo==0.2.0
|
7 |
edge-tts
|
8 |
-
asyncio
|
9 |
-
torchvision
|
10 |
-
accelerate
|
11 |
-
beautifulsoup4>=4.9
|
12 |
-
requests>=2.20
|
13 |
-
onnxruntime
|
14 |
-
sentencepiece
|
15 |
-
soxr
|
16 |
-
pydub
|
17 |
-
groq
|
18 |
-
opencv-python
|
19 |
-
qwen-vl-utils
|
20 |
-
av
|
21 |
-
gradio --pre
|
|
|
1 |
+
transformers==4.40.0
|
2 |
+
datasets
|
3 |
pillow
|
4 |
numpy
|
5 |
torch
|
6 |
streaming-stt-nemo==0.2.0
|
7 |
edge-tts
|
8 |
+
asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/__init__.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
|
4 |
-
import sys
|
5 |
-
|
6 |
-
|
7 |
-
if sys.version_info.minor < 8: # pragma: no cover
|
8 |
-
raise RuntimeError("Importing PySpaces requires Python 3.8+")
|
9 |
-
|
10 |
-
|
11 |
-
# Prevent gradio from importing spaces
|
12 |
-
if (gr := sys.modules.get('gradio')) is not None: # pragma: no cover
|
13 |
-
try:
|
14 |
-
gr.Blocks
|
15 |
-
except AttributeError:
|
16 |
-
raise ImportError
|
17 |
-
|
18 |
-
|
19 |
-
from .zero.decorator import GPU
|
20 |
-
from .gradio import gradio_auto_wrap
|
21 |
-
from .gradio import disable_gradio_auto_wrap
|
22 |
-
from .gradio import enable_gradio_auto_wrap
|
23 |
-
|
24 |
-
|
25 |
-
__all__ = [
|
26 |
-
'GPU',
|
27 |
-
'gradio_auto_wrap',
|
28 |
-
'disable_gradio_auto_wrap',
|
29 |
-
'enable_gradio_auto_wrap',
|
30 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/config.py
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import os
|
6 |
-
from pathlib import Path
|
7 |
-
|
8 |
-
from .utils import boolean
|
9 |
-
|
10 |
-
|
11 |
-
ZEROGPU_OFFLOAD_DIR_DEFAULT = str(Path.home() / '.zerogpu' / 'tensors')
|
12 |
-
|
13 |
-
|
14 |
-
class Settings:
|
15 |
-
def __init__(self):
|
16 |
-
self.zero_gpu = boolean(
|
17 |
-
os.getenv('SPACES_ZERO_GPU'))
|
18 |
-
self.zero_device_api_url = (
|
19 |
-
os.getenv('SPACES_ZERO_DEVICE_API_URL'))
|
20 |
-
self.gradio_auto_wrap = boolean(
|
21 |
-
os.getenv('SPACES_GRADIO_AUTO_WRAP'))
|
22 |
-
self.zero_patch_torch_device = boolean(
|
23 |
-
os.getenv('ZERO_GPU_PATCH_TORCH_DEVICE'))
|
24 |
-
self.zero_gpu_v2 = boolean(
|
25 |
-
os.getenv('ZEROGPU_V2'))
|
26 |
-
self.zerogpu_offload_dir = (
|
27 |
-
os.getenv('ZEROGPU_OFFLOAD_DIR', ZEROGPU_OFFLOAD_DIR_DEFAULT))
|
28 |
-
|
29 |
-
|
30 |
-
Config = Settings()
|
31 |
-
|
32 |
-
|
33 |
-
if Config.zero_gpu:
|
34 |
-
assert Config.zero_device_api_url is not None, (
|
35 |
-
'SPACES_ZERO_DEVICE_API_URL env must be set '
|
36 |
-
'on ZeroGPU Spaces (identified by SPACES_ZERO_GPU=true)'
|
37 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/gradio.py
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
from typing import Callable
|
6 |
-
from typing import Generator
|
7 |
-
from typing import TypeVar
|
8 |
-
from typing import overload
|
9 |
-
from typing_extensions import ParamSpec
|
10 |
-
|
11 |
-
from .config import Config
|
12 |
-
from .zero.decorator import GPU
|
13 |
-
|
14 |
-
|
15 |
-
Param = ParamSpec('Param')
|
16 |
-
Res = TypeVar('Res')
|
17 |
-
|
18 |
-
|
19 |
-
gradio_auto_wrap_enabled = Config.gradio_auto_wrap
|
20 |
-
|
21 |
-
|
22 |
-
def disable_gradio_auto_wrap():
|
23 |
-
global gradio_auto_wrap_enabled
|
24 |
-
gradio_auto_wrap_enabled = False
|
25 |
-
|
26 |
-
def enable_gradio_auto_wrap():
|
27 |
-
global gradio_auto_wrap_enabled
|
28 |
-
gradio_auto_wrap_enabled = True
|
29 |
-
|
30 |
-
|
31 |
-
@overload
|
32 |
-
def gradio_auto_wrap(
|
33 |
-
task:
|
34 |
-
Callable[Param, Res],
|
35 |
-
) -> Callable[Param, Res]:
|
36 |
-
...
|
37 |
-
@overload
|
38 |
-
def gradio_auto_wrap(
|
39 |
-
task:
|
40 |
-
None,
|
41 |
-
) -> None:
|
42 |
-
...
|
43 |
-
def gradio_auto_wrap(
|
44 |
-
task:
|
45 |
-
Callable[Param, Res]
|
46 |
-
| None,
|
47 |
-
) -> (Callable[Param, Res]
|
48 |
-
| None):
|
49 |
-
"""
|
50 |
-
"""
|
51 |
-
if not gradio_auto_wrap_enabled:
|
52 |
-
return task
|
53 |
-
if not callable(task):
|
54 |
-
return task
|
55 |
-
return GPU(task) # type: ignore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/utils.py
DELETED
@@ -1,85 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import ctypes
|
6 |
-
import sys
|
7 |
-
from functools import lru_cache as cache
|
8 |
-
from functools import partial
|
9 |
-
|
10 |
-
import multiprocessing
|
11 |
-
from multiprocessing.queues import SimpleQueue as _SimpleQueue
|
12 |
-
from pathlib import Path
|
13 |
-
from pickle import PicklingError
|
14 |
-
from typing import Callable
|
15 |
-
from typing import TypeVar
|
16 |
-
|
17 |
-
|
18 |
-
GRADIO_VERSION_ERROR_MESSAGE = "Make sure Gradio version is at least 3.46"
|
19 |
-
|
20 |
-
|
21 |
-
T = TypeVar('T')
|
22 |
-
|
23 |
-
|
24 |
-
@cache
|
25 |
-
def self_cgroup_device_path() -> str:
|
26 |
-
cgroup_content = Path('/proc/self/cgroup').read_text()
|
27 |
-
for line in cgroup_content.strip().split('\n'):
|
28 |
-
contents = line.split(':devices:')
|
29 |
-
if len(contents) != 2:
|
30 |
-
continue # pragma: no cover
|
31 |
-
return contents[1]
|
32 |
-
raise Exception # pragma: no cover
|
33 |
-
|
34 |
-
|
35 |
-
if sys.version_info.minor < 9: # pragma: no cover
|
36 |
-
_SimpleQueue.__class_getitem__ = classmethod(lambda cls, _: cls) # type: ignore
|
37 |
-
|
38 |
-
class SimpleQueue(_SimpleQueue[T]):
|
39 |
-
def __init__(self, *args):
|
40 |
-
super().__init__(*args, ctx=multiprocessing.get_context('fork'))
|
41 |
-
def put(self, obj: T):
|
42 |
-
try:
|
43 |
-
super().put(obj)
|
44 |
-
except PicklingError:
|
45 |
-
raise # pragma: no cover
|
46 |
-
# https://bugs.python.org/issue29187
|
47 |
-
except Exception as e:
|
48 |
-
message = str(e)
|
49 |
-
if not "pickle" in message:
|
50 |
-
raise # pragma: no cover
|
51 |
-
raise PicklingError(message)
|
52 |
-
def close(self): # Python 3.8 static typing trick
|
53 |
-
super().close() # type: ignore
|
54 |
-
def wlock_release(self):
|
55 |
-
if (lock := getattr(self, '_wlock', None)) is None:
|
56 |
-
return # pragma: no cover
|
57 |
-
try:
|
58 |
-
lock.release()
|
59 |
-
except ValueError:
|
60 |
-
pass
|
61 |
-
|
62 |
-
|
63 |
-
def drop_params(fn: Callable[[], T]) -> Callable[..., T]:
|
64 |
-
def drop(*args):
|
65 |
-
return fn()
|
66 |
-
return drop
|
67 |
-
|
68 |
-
|
69 |
-
def boolean(value: str | None) -> bool:
|
70 |
-
return value is not None and value.lower() in ("1", "t", "true")
|
71 |
-
|
72 |
-
|
73 |
-
def gradio_request_var():
|
74 |
-
try:
|
75 |
-
from gradio.context import LocalContext
|
76 |
-
except ImportError: # pragma: no cover
|
77 |
-
raise RuntimeError(GRADIO_VERSION_ERROR_MESSAGE)
|
78 |
-
return LocalContext.request
|
79 |
-
|
80 |
-
|
81 |
-
def malloc_trim():
|
82 |
-
ctypes.CDLL("libc.so.6").malloc_trim(0)
|
83 |
-
|
84 |
-
|
85 |
-
debug = partial(print, 'SPACES_ZERO_GPU_DEBUG')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/__init__.py
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
|
4 |
-
from pathlib import Path
|
5 |
-
|
6 |
-
from ..config import Config
|
7 |
-
|
8 |
-
|
9 |
-
if Config.zero_gpu:
|
10 |
-
|
11 |
-
from . import gradio
|
12 |
-
from . import torch
|
13 |
-
|
14 |
-
if torch.is_in_bad_fork():
|
15 |
-
raise RuntimeError(
|
16 |
-
"CUDA has been initialized before importing the `spaces` package"
|
17 |
-
)
|
18 |
-
|
19 |
-
torch.patch()
|
20 |
-
gradio.one_launch(torch.pack)
|
21 |
-
Path(Config.zerogpu_offload_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/api.py
DELETED
@@ -1,156 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Synced with huggingface/pyspaces:spaces/zero/api.py
|
3 |
-
"""
|
4 |
-
from __future__ import annotations
|
5 |
-
|
6 |
-
from datetime import timedelta
|
7 |
-
from typing import Any
|
8 |
-
from typing import Generator
|
9 |
-
from typing import Literal
|
10 |
-
from typing import NamedTuple
|
11 |
-
from typing import Optional
|
12 |
-
from typing import overload
|
13 |
-
|
14 |
-
import httpx
|
15 |
-
from pydantic import BaseModel
|
16 |
-
from typing_extensions import assert_never
|
17 |
-
|
18 |
-
|
19 |
-
AllowToken = str
|
20 |
-
NvidiaIndex = int # TODO: Migrate to GpuIndex (less confusing for MIG)
|
21 |
-
NvidiaUUID = str
|
22 |
-
CGroupPath = str
|
23 |
-
VisitorId = str
|
24 |
-
Score = float
|
25 |
-
|
26 |
-
AuthLevel = Literal['regular', 'pro']
|
27 |
-
|
28 |
-
|
29 |
-
AUTHENTICATED_HEADER = 'X-Authenticated'
|
30 |
-
|
31 |
-
|
32 |
-
class ScheduleResponse(BaseModel):
|
33 |
-
idle: bool
|
34 |
-
nvidiaIndex: int
|
35 |
-
nvidiaUUID: str
|
36 |
-
allowToken: str
|
37 |
-
|
38 |
-
|
39 |
-
class QuotaInfos(BaseModel):
|
40 |
-
left: int
|
41 |
-
wait: timedelta
|
42 |
-
|
43 |
-
|
44 |
-
class ReportUsageMonitoringParams(NamedTuple):
|
45 |
-
nvidia_index: int
|
46 |
-
visitor_id: str
|
47 |
-
duration: timedelta
|
48 |
-
|
49 |
-
|
50 |
-
class QueueEvent(BaseModel):
|
51 |
-
event: Literal['ping', 'failed', 'succeeded']
|
52 |
-
data: Optional[ScheduleResponse] = None
|
53 |
-
|
54 |
-
|
55 |
-
def sse_parse(text: str):
|
56 |
-
event, *data = text.strip().splitlines()
|
57 |
-
assert event.startswith('event:')
|
58 |
-
event = event[6:].strip()
|
59 |
-
if event in ('ping', 'failed'):
|
60 |
-
return QueueEvent(event=event)
|
61 |
-
assert event == 'succeeded'
|
62 |
-
(data,) = data
|
63 |
-
assert data.startswith('data:')
|
64 |
-
data = data[5:].strip()
|
65 |
-
return QueueEvent(event=event, data=ScheduleResponse.parse_raw(data))
|
66 |
-
|
67 |
-
|
68 |
-
def sse_stream(res: httpx.Response) -> Generator[QueueEvent, Any, None]:
|
69 |
-
for text in res.iter_text():
|
70 |
-
if len(text) == 0:
|
71 |
-
break # pragma: no cover
|
72 |
-
try:
|
73 |
-
yield sse_parse(text)
|
74 |
-
except GeneratorExit:
|
75 |
-
res.close()
|
76 |
-
break
|
77 |
-
|
78 |
-
|
79 |
-
class APIClient:
|
80 |
-
|
81 |
-
def __init__(self, client: httpx.Client):
|
82 |
-
self.client = client
|
83 |
-
|
84 |
-
def startup_report(self) -> httpx.codes:
|
85 |
-
res = self.client.post('/startup-report')
|
86 |
-
return httpx.codes(res.status_code)
|
87 |
-
|
88 |
-
def schedule(
|
89 |
-
self,
|
90 |
-
cgroup_path: str,
|
91 |
-
task_id: int = 0,
|
92 |
-
token: str | None = None,
|
93 |
-
duration_seconds: int | None = None,
|
94 |
-
enable_queue: bool = True,
|
95 |
-
):
|
96 |
-
params: dict[str, str | int | bool] = {
|
97 |
-
'cgroupPath': cgroup_path,
|
98 |
-
'taskId': task_id,
|
99 |
-
'enableQueue': enable_queue,
|
100 |
-
}
|
101 |
-
if duration_seconds is not None:
|
102 |
-
params['durationSeconds'] = duration_seconds
|
103 |
-
if token is not None:
|
104 |
-
params['token'] = token
|
105 |
-
res = self.client.send(
|
106 |
-
request=self.client.build_request(
|
107 |
-
method='POST',
|
108 |
-
url='/schedule',
|
109 |
-
params=params,
|
110 |
-
),
|
111 |
-
stream=True,
|
112 |
-
)
|
113 |
-
status = httpx.codes(res.status_code)
|
114 |
-
auth: AuthLevel | None = res.headers.get(AUTHENTICATED_HEADER)
|
115 |
-
if (status is not httpx.codes.OK and
|
116 |
-
status is not httpx.codes.TOO_MANY_REQUESTS
|
117 |
-
):
|
118 |
-
res.close()
|
119 |
-
return status, auth
|
120 |
-
if "text/event-stream" in res.headers['content-type']:
|
121 |
-
return sse_stream(res), auth
|
122 |
-
res.read()
|
123 |
-
if status is httpx.codes.TOO_MANY_REQUESTS:
|
124 |
-
return QuotaInfos(**res.json()), auth # pragma: no cover
|
125 |
-
if status is httpx.codes.OK:
|
126 |
-
return ScheduleResponse(**res.json()), auth
|
127 |
-
assert_never(status)
|
128 |
-
|
129 |
-
def allow(
|
130 |
-
self,
|
131 |
-
allow_token: str,
|
132 |
-
pid: int,
|
133 |
-
):
|
134 |
-
res = self.client.post('/allow', params={
|
135 |
-
'allowToken': allow_token,
|
136 |
-
'pid': pid,
|
137 |
-
})
|
138 |
-
return httpx.codes(res.status_code)
|
139 |
-
|
140 |
-
def release(
|
141 |
-
self,
|
142 |
-
allow_token: str,
|
143 |
-
fail: bool = False,
|
144 |
-
) -> httpx.codes:
|
145 |
-
res = self.client.post('/release', params={
|
146 |
-
'allowToken': allow_token,
|
147 |
-
'fail': fail,
|
148 |
-
})
|
149 |
-
return httpx.codes(res.status_code)
|
150 |
-
|
151 |
-
def get_queue_size(self) -> int:
|
152 |
-
res = self.client.get('/queue-size')
|
153 |
-
assert res.status_code == 200, res.status_code
|
154 |
-
size = res.json()
|
155 |
-
assert isinstance(size, int)
|
156 |
-
return size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/client.py
DELETED
@@ -1,239 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import os
|
6 |
-
import time
|
7 |
-
import warnings
|
8 |
-
from datetime import timedelta
|
9 |
-
|
10 |
-
import gradio as gr
|
11 |
-
import httpx
|
12 |
-
from packaging import version
|
13 |
-
from typing_extensions import assert_never
|
14 |
-
|
15 |
-
from .. import utils
|
16 |
-
from ..config import Config
|
17 |
-
from .api import APIClient
|
18 |
-
from .api import AuthLevel
|
19 |
-
from .api import QuotaInfos
|
20 |
-
from .api import ScheduleResponse
|
21 |
-
from .gradio import HTMLError
|
22 |
-
from .gradio import get_event
|
23 |
-
from .gradio import supports_auth
|
24 |
-
|
25 |
-
|
26 |
-
TOKEN_HEADER = 'X-IP-Token'
|
27 |
-
DEFAULT_SCHEDULE_DURATION = 60
|
28 |
-
|
29 |
-
QUOTA_MESSAGE = "You have exceeded your GPU quota"
|
30 |
-
UNUSED_MESSAGE = "GPU device not used"
|
31 |
-
NO_GPU_MESSAGE_REGULAR = "No GPU was available"
|
32 |
-
NO_GPU_MESSAGE_INQUEUE = "No GPU was available after 60s"
|
33 |
-
|
34 |
-
SIGNUP_ON_HF_TXT = "Create a free account"
|
35 |
-
SIGNUP_ON_HF_URL = "https://huggingface.co/join"
|
36 |
-
SUBSCRIBE_TO_PRO_TXT = "Subscribe to Pro"
|
37 |
-
SUBSCRIBE_TO_PRO_URL = "https://huggingface.co/settings/billing/subscription"
|
38 |
-
|
39 |
-
|
40 |
-
def api_client():
|
41 |
-
assert Config.zero_device_api_url is not None
|
42 |
-
httpx_client = httpx.Client(base_url=Config.zero_device_api_url, timeout=60, verify=False)
|
43 |
-
return APIClient(httpx_client)
|
44 |
-
|
45 |
-
|
46 |
-
def startup_report():
|
47 |
-
retries, max_retries = 0, 2
|
48 |
-
client = api_client()
|
49 |
-
while (status := client.startup_report()) is httpx.codes.NOT_FOUND: # pragma: no cover
|
50 |
-
time.sleep(1)
|
51 |
-
if (retries := retries + 1) > max_retries:
|
52 |
-
raise RuntimeError("Error while initializing ZeroGPU: NotFound")
|
53 |
-
if status is not httpx.codes.OK: # pragma: no cover
|
54 |
-
raise RuntimeError("Error while initializing ZeroGPU: Unknown")
|
55 |
-
|
56 |
-
|
57 |
-
def html_string(html_contents: str, text_contents: str): # pragma: no cover
|
58 |
-
class HTMLString(str):
|
59 |
-
def __str__(self):
|
60 |
-
return text_contents
|
61 |
-
return HTMLString(html_contents)
|
62 |
-
|
63 |
-
|
64 |
-
def _toast_action(
|
65 |
-
auth: AuthLevel | None,
|
66 |
-
supports_html: bool,
|
67 |
-
pro_message: str,
|
68 |
-
unlogged_desc: str,
|
69 |
-
logged_desc: str,
|
70 |
-
ending: str,
|
71 |
-
) -> tuple[str, str]: # pragma: no cover
|
72 |
-
if not supports_auth() or auth == 'pro':
|
73 |
-
return pro_message, pro_message
|
74 |
-
html = ""
|
75 |
-
link = SIGNUP_ON_HF_URL if auth is None else SUBSCRIBE_TO_PRO_URL
|
76 |
-
text = SIGNUP_ON_HF_TXT if auth is None else SUBSCRIBE_TO_PRO_TXT
|
77 |
-
desc = unlogged_desc if auth is None else logged_desc
|
78 |
-
desc += f" {ending}."
|
79 |
-
style = ";".join([
|
80 |
-
"white-space: nowrap",
|
81 |
-
"text-underline-offset: 2px",
|
82 |
-
"color: var(--body-text-color)",
|
83 |
-
])
|
84 |
-
if supports_html:
|
85 |
-
html += f'<a style="{style}" href="{link}">'
|
86 |
-
html += text
|
87 |
-
if supports_html:
|
88 |
-
html += '</a> '
|
89 |
-
html += desc
|
90 |
-
markdown = f'[{text}]({link}) {desc}'
|
91 |
-
return html, markdown
|
92 |
-
|
93 |
-
|
94 |
-
def schedule(
|
95 |
-
task_id: int,
|
96 |
-
request: gr.Request | None = None,
|
97 |
-
duration: timedelta | None = None,
|
98 |
-
_first_attempt: bool = True,
|
99 |
-
) -> ScheduleResponse:
|
100 |
-
|
101 |
-
if not (gradio_version := version.parse(gr.__version__)).major >= 4: # pragma: no cover
|
102 |
-
raise RuntimeError("ZeroGPU is only compatible with Gradio 4+")
|
103 |
-
|
104 |
-
GRADIO_HTML_TOASTS = gradio_version.minor >= 39
|
105 |
-
|
106 |
-
res, auth = api_client().schedule(
|
107 |
-
cgroup_path=utils.self_cgroup_device_path(),
|
108 |
-
task_id=task_id,
|
109 |
-
token=_get_token(request),
|
110 |
-
duration_seconds=duration.seconds if duration is not None else None,
|
111 |
-
)
|
112 |
-
|
113 |
-
if isinstance(res, ScheduleResponse):
|
114 |
-
return res
|
115 |
-
|
116 |
-
if isinstance(res, QuotaInfos): # pragma: no cover
|
117 |
-
requested = duration.seconds if duration is not None else DEFAULT_SCHEDULE_DURATION
|
118 |
-
if res.wait < timedelta(0):
|
119 |
-
raise gr.Error(
|
120 |
-
f"The requested GPU duration ({requested}s) "
|
121 |
-
f"is larger than the maximum allowed"
|
122 |
-
)
|
123 |
-
else:
|
124 |
-
gpu = "Pro GPU" if auth == 'pro' else ("free GPU" if auth == 'regular' else "GPU")
|
125 |
-
message = (
|
126 |
-
f"You have exceeded your {gpu} quota "
|
127 |
-
f"({requested}s requested vs. {res.left}s left)."
|
128 |
-
)
|
129 |
-
details_html, details_markdown = _toast_action(
|
130 |
-
auth=auth,
|
131 |
-
supports_html=GRADIO_HTML_TOASTS,
|
132 |
-
pro_message=f"Try again in {res.wait}",
|
133 |
-
unlogged_desc="to get more",
|
134 |
-
logged_desc="to get 5x more",
|
135 |
-
ending="usage quota",
|
136 |
-
)
|
137 |
-
message_html = f"{message} {details_html}"
|
138 |
-
message_text = f"{message} {details_markdown}"
|
139 |
-
raise HTMLError(html_string(message_html, message_text))
|
140 |
-
|
141 |
-
if not isinstance(res, httpx.codes): # pragma: no cover
|
142 |
-
gr.Info("Waiting for a GPU to become available")
|
143 |
-
# TODO: Sign-up message if not authenticated (after some time ?)
|
144 |
-
connection_event = get_event()
|
145 |
-
if connection_event is None and request is not None:
|
146 |
-
warnings.warn("ZeroGPU: Cannot get Gradio app Queue instance")
|
147 |
-
while True:
|
148 |
-
try:
|
149 |
-
event = next(res)
|
150 |
-
except StopIteration:
|
151 |
-
raise RuntimeError("Unexpected end of stream")
|
152 |
-
except httpx.RemoteProtocolError:
|
153 |
-
if not _first_attempt:
|
154 |
-
raise RuntimeError("Error while re-trying after queue disconnect")
|
155 |
-
return schedule(task_id, request, duration, _first_attempt=False)
|
156 |
-
if event.event == 'ping':
|
157 |
-
if connection_event is not None and not connection_event.alive:
|
158 |
-
res.close()
|
159 |
-
raise RuntimeError("Connection closed by visitor while queueing")
|
160 |
-
continue
|
161 |
-
if event.event == 'failed':
|
162 |
-
details_html, details_markdown = _toast_action(
|
163 |
-
auth=auth,
|
164 |
-
supports_html=GRADIO_HTML_TOASTS,
|
165 |
-
pro_message="Retry later",
|
166 |
-
unlogged_desc="to get a higher",
|
167 |
-
logged_desc="to get the highest",
|
168 |
-
ending="priority in ZeroGPU queues",
|
169 |
-
)
|
170 |
-
message_html = f"{NO_GPU_MESSAGE_INQUEUE}. {details_html}"
|
171 |
-
message_text = f"{NO_GPU_MESSAGE_INQUEUE} {details_markdown}"
|
172 |
-
raise HTMLError(html_string(message_html, message_text))
|
173 |
-
if event.event == 'succeeded':
|
174 |
-
assert event.data is not None
|
175 |
-
if connection_event is not None and not connection_event.alive:
|
176 |
-
release(event.data.allowToken)
|
177 |
-
raise RuntimeError("Connection closed by visitor on queue success")
|
178 |
-
gr.Info("Successfully acquired a GPU")
|
179 |
-
return event.data
|
180 |
-
|
181 |
-
if res is httpx.codes.SERVICE_UNAVAILABLE:
|
182 |
-
raise gr.Error(NO_GPU_MESSAGE_REGULAR)
|
183 |
-
|
184 |
-
# TODO: Find a way to log 'detail' response field
|
185 |
-
raise RuntimeError(f"ZeroGPU API /schedule error: {res} ({httpx.codes.get_reason_phrase(res)})") # pragma: no cover
|
186 |
-
|
187 |
-
|
188 |
-
def allow(allow_token: str) -> None:
|
189 |
-
pid = os.getpid()
|
190 |
-
assert pid != 1, "Allowing PID 1 on ZeroGPU will end up killing your Space"
|
191 |
-
assert api_client().allow(allow_token=allow_token, pid=pid) is httpx.codes.OK
|
192 |
-
|
193 |
-
|
194 |
-
def release(
|
195 |
-
allow_token: str, *,
|
196 |
-
fail: bool = False,
|
197 |
-
allow_404: bool = False,
|
198 |
-
) -> None:
|
199 |
-
|
200 |
-
res = api_client().release(
|
201 |
-
allow_token=allow_token,
|
202 |
-
fail=fail,
|
203 |
-
)
|
204 |
-
|
205 |
-
if res is httpx.codes.NO_CONTENT: # pragma: no cover
|
206 |
-
try:
|
207 |
-
gr.Warning(UNUSED_MESSAGE)
|
208 |
-
except AttributeError:
|
209 |
-
pass
|
210 |
-
warnings.warn(UNUSED_MESSAGE, RuntimeWarning)
|
211 |
-
return None
|
212 |
-
|
213 |
-
if res is httpx.codes.NOT_FOUND:
|
214 |
-
if not allow_404:
|
215 |
-
warnings.warn("ZeroGPU API /release warning: 404 Not Found")
|
216 |
-
return None
|
217 |
-
|
218 |
-
if httpx.codes.is_success(res):
|
219 |
-
return None
|
220 |
-
|
221 |
-
# TODO: Find a way to log 'detail' response field
|
222 |
-
# TODO: Only raise in dev environment. Simply warn in production ?
|
223 |
-
raise RuntimeError(f"ZeroGPU API /release error: {res} ({httpx.codes.get_reason_phrase(res)})") # pragma: no cover
|
224 |
-
|
225 |
-
|
226 |
-
def _get_token(request: gr.Request | None) -> str | None:
|
227 |
-
|
228 |
-
if request is None:
|
229 |
-
return None
|
230 |
-
|
231 |
-
headers = getattr(request, 'headers', None)
|
232 |
-
if headers is None or not hasattr(headers, '__dict__'):
|
233 |
-
raise gr.Error("Internal Gradio error")
|
234 |
-
|
235 |
-
# Compatibility trick
|
236 |
-
if not hasattr(headers, 'get'):
|
237 |
-
headers = headers.__dict__ # pragma: no cover
|
238 |
-
|
239 |
-
return headers.get(TOKEN_HEADER.lower())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/decorator.py
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import inspect
|
6 |
-
import sys
|
7 |
-
import warnings
|
8 |
-
from datetime import timedelta
|
9 |
-
from functools import partial
|
10 |
-
from typing import Callable
|
11 |
-
from typing import TypeVar
|
12 |
-
from typing import overload
|
13 |
-
from typing_extensions import ParamSpec
|
14 |
-
from typing_extensions import Unpack
|
15 |
-
|
16 |
-
from ..config import Config
|
17 |
-
from .types import DynamicDuration
|
18 |
-
from .types import EmptyKwargs
|
19 |
-
|
20 |
-
|
21 |
-
P = ParamSpec('P')
|
22 |
-
R = TypeVar('R')
|
23 |
-
|
24 |
-
|
25 |
-
decorated_cache: dict[Callable, Callable] = {}
|
26 |
-
|
27 |
-
|
28 |
-
@overload
|
29 |
-
def GPU(
|
30 |
-
task: None = None, *,
|
31 |
-
duration: DynamicDuration[P] = None,
|
32 |
-
) -> Callable[[Callable[P, R]], Callable[P, R]]:
|
33 |
-
...
|
34 |
-
@overload
|
35 |
-
def GPU(
|
36 |
-
task: Callable[P, R], *,
|
37 |
-
duration: DynamicDuration[P] = None,
|
38 |
-
) -> Callable[P, R]:
|
39 |
-
...
|
40 |
-
def GPU(
|
41 |
-
task: Callable[P, R] | None = None, *,
|
42 |
-
duration: DynamicDuration[P] = None,
|
43 |
-
**kwargs: Unpack[EmptyKwargs],
|
44 |
-
) -> Callable[[Callable[P, R]], Callable[P, R]] | Callable[P, R]:
|
45 |
-
"""
|
46 |
-
ZeroGPU decorator
|
47 |
-
|
48 |
-
Basic usage:
|
49 |
-
```
|
50 |
-
@spaces.GPU
|
51 |
-
def fn(...):
|
52 |
-
# CUDA is available here
|
53 |
-
pass
|
54 |
-
```
|
55 |
-
|
56 |
-
With custom duration:
|
57 |
-
```
|
58 |
-
@spaces.GPU(duration=45) # Expressed in seconds
|
59 |
-
def fn(...):
|
60 |
-
# CUDA is available here
|
61 |
-
pass
|
62 |
-
```
|
63 |
-
|
64 |
-
Args:
|
65 |
-
task (`Callable | None`): Python function that requires CUDA
|
66 |
-
duration (`int | datetime.timedelta`): Estimated duration in seconds or `datetime.timedelta`
|
67 |
-
|
68 |
-
Returns:
|
69 |
-
`Callable`: GPU-ready function
|
70 |
-
"""
|
71 |
-
if "enable_queue" in kwargs:
|
72 |
-
warnings.warn("`enable_queue` parameter is now ignored and always set to `True`")
|
73 |
-
if task is None:
|
74 |
-
return partial(_GPU, duration=duration)
|
75 |
-
return _GPU(task, duration)
|
76 |
-
|
77 |
-
|
78 |
-
def _GPU(
|
79 |
-
task: Callable[P, R],
|
80 |
-
duration: DynamicDuration[P],
|
81 |
-
) -> Callable[P, R]:
|
82 |
-
|
83 |
-
if not Config.zero_gpu:
|
84 |
-
return task
|
85 |
-
|
86 |
-
from . import client
|
87 |
-
from .wrappers import regular_function_wrapper
|
88 |
-
from .wrappers import generator_function_wrapper
|
89 |
-
|
90 |
-
if sys.version_info.minor < 9: # pragma: no cover
|
91 |
-
raise RuntimeError("Actually using @spaces.GPU on a ZeroGPU Space requires Python 3.9+")
|
92 |
-
|
93 |
-
if task in decorated_cache:
|
94 |
-
# TODO: Assert same duration ?
|
95 |
-
return decorated_cache[task] # type: ignore
|
96 |
-
|
97 |
-
if inspect.iscoroutinefunction(task):
|
98 |
-
raise NotImplementedError
|
99 |
-
|
100 |
-
if inspect.isgeneratorfunction(task):
|
101 |
-
decorated = generator_function_wrapper(task, duration)
|
102 |
-
else:
|
103 |
-
decorated = regular_function_wrapper(task, duration)
|
104 |
-
|
105 |
-
setattr(decorated, 'zerogpu', None)
|
106 |
-
|
107 |
-
client.startup_report()
|
108 |
-
decorated_cache.update({
|
109 |
-
task: decorated,
|
110 |
-
decorated: decorated,
|
111 |
-
})
|
112 |
-
|
113 |
-
return decorated # type: ignore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/gradio.py
DELETED
@@ -1,150 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
from functools import wraps
|
6 |
-
from packaging import version
|
7 |
-
from typing import Callable
|
8 |
-
from typing import NamedTuple
|
9 |
-
from typing import TYPE_CHECKING
|
10 |
-
import warnings
|
11 |
-
|
12 |
-
import gradio as gr
|
13 |
-
from gradio.context import Context
|
14 |
-
from gradio.context import LocalContext
|
15 |
-
from gradio.helpers import Progress
|
16 |
-
from gradio.helpers import TrackedIterable
|
17 |
-
from gradio.queueing import Queue
|
18 |
-
from typing_extensions import ParamSpec
|
19 |
-
|
20 |
-
from ..utils import SimpleQueue
|
21 |
-
from .types import GeneratorResQueueResult
|
22 |
-
from .types import GradioQueueEvent
|
23 |
-
from .types import RegularResQueueResult
|
24 |
-
|
25 |
-
|
26 |
-
QUEUE_RPC_METHODS = [
|
27 |
-
"set_progress",
|
28 |
-
"log_message",
|
29 |
-
]
|
30 |
-
|
31 |
-
|
32 |
-
class GradioPartialContext(NamedTuple):
|
33 |
-
event_id: str | None
|
34 |
-
in_event_listener: bool
|
35 |
-
progress: Progress | None
|
36 |
-
|
37 |
-
@staticmethod
|
38 |
-
def get():
|
39 |
-
TrackedIterable.__reduce__ = tracked_iterable__reduce__
|
40 |
-
return GradioPartialContext(
|
41 |
-
event_id=LocalContext.event_id.get(),
|
42 |
-
in_event_listener=LocalContext.in_event_listener.get(),
|
43 |
-
progress=LocalContext.progress.get(),
|
44 |
-
)
|
45 |
-
|
46 |
-
@staticmethod
|
47 |
-
def apply(context: 'GradioPartialContext'):
|
48 |
-
LocalContext.event_id.set(context.event_id)
|
49 |
-
LocalContext.in_event_listener.set(context.in_event_listener)
|
50 |
-
LocalContext.progress.set(context.progress)
|
51 |
-
|
52 |
-
|
53 |
-
def get_queue_instance():
|
54 |
-
blocks = LocalContext.blocks.get()
|
55 |
-
if blocks is None: # pragma: no cover
|
56 |
-
return None
|
57 |
-
return blocks._queue
|
58 |
-
|
59 |
-
|
60 |
-
def get_event():
|
61 |
-
queue = get_queue_instance()
|
62 |
-
event_id = LocalContext.event_id.get()
|
63 |
-
if queue is None:
|
64 |
-
return None
|
65 |
-
if event_id is None: # pragma: no cover
|
66 |
-
return None
|
67 |
-
for job in queue.active_jobs:
|
68 |
-
if job is None: # pragma: no cover
|
69 |
-
continue
|
70 |
-
for event in job:
|
71 |
-
if event._id == event_id:
|
72 |
-
return event
|
73 |
-
|
74 |
-
|
75 |
-
def get_server_port() -> int | None:
|
76 |
-
from_request_context = True
|
77 |
-
if (blocks := LocalContext.blocks.get()) is None: # Request
|
78 |
-
from_request_context = False
|
79 |
-
if (blocks := Context.root_block) is None: # Caching
|
80 |
-
return None
|
81 |
-
if (server := getattr(blocks, 'server', None)) is None:
|
82 |
-
if from_request_context:
|
83 |
-
warnings.warn("Gradio: No blocks.server inside a request") # pragma: no cover
|
84 |
-
return -1
|
85 |
-
if TYPE_CHECKING:
|
86 |
-
assert (server := blocks.server)
|
87 |
-
return server.config.port
|
88 |
-
|
89 |
-
|
90 |
-
def try_process_queue_event(method_name: str, *args, **kwargs):
|
91 |
-
queue = get_queue_instance()
|
92 |
-
if queue is None: # pragma: no cover
|
93 |
-
warnings.warn("ZeroGPU: Cannot get Gradio app Queue instance")
|
94 |
-
return
|
95 |
-
method = getattr(queue, method_name, None)
|
96 |
-
assert callable(method)
|
97 |
-
method(*args, **kwargs)
|
98 |
-
|
99 |
-
|
100 |
-
def patch_gradio_queue(
|
101 |
-
res_queue: SimpleQueue[RegularResQueueResult | None] | SimpleQueue[GeneratorResQueueResult | None],
|
102 |
-
):
|
103 |
-
|
104 |
-
def rpc_method(method_name: str):
|
105 |
-
def method(*args, **kwargs):
|
106 |
-
if args and isinstance(args[0], Queue):
|
107 |
-
args = args[1:] # drop `self`
|
108 |
-
res_queue.put(GradioQueueEvent(method_name, args, kwargs))
|
109 |
-
return method
|
110 |
-
|
111 |
-
for method_name in QUEUE_RPC_METHODS:
|
112 |
-
if (method := getattr(Queue, method_name, None)) is None: # pragma: no cover
|
113 |
-
warnings.warn(f"ZeroGPU: Gradio Queue has no {method_name} attribute")
|
114 |
-
continue
|
115 |
-
if not callable(method): # pragma: no cover
|
116 |
-
warnings.warn(f"ZeroGPU: Gradio Queue {method_name} is not callable")
|
117 |
-
continue
|
118 |
-
setattr(Queue, method_name, rpc_method(method_name))
|
119 |
-
|
120 |
-
TrackedIterable.__reduce__ = tracked_iterable__reduce__
|
121 |
-
|
122 |
-
|
123 |
-
def tracked_iterable__reduce__(self):
|
124 |
-
res: tuple = super(TrackedIterable, self).__reduce__() # type: ignore
|
125 |
-
cls, base, state, *_ = res
|
126 |
-
return cls, base,{**state, **{
|
127 |
-
'iterable': None,
|
128 |
-
'_tqdm': None,
|
129 |
-
}}
|
130 |
-
|
131 |
-
|
132 |
-
def supports_auth():
|
133 |
-
return version.parse(gr.__version__) >= version.Version('4.27.0')
|
134 |
-
|
135 |
-
|
136 |
-
Param = ParamSpec('Param')
|
137 |
-
|
138 |
-
def one_launch(task: Callable[Param, None], *task_args: Param.args, **task_kwargs: Param.kwargs):
|
139 |
-
_launch = gr.Blocks.launch
|
140 |
-
@wraps(gr.Blocks.launch)
|
141 |
-
def launch(*args, **kwargs):
|
142 |
-
task(*task_args, **task_kwargs)
|
143 |
-
gr.Blocks.launch = _launch
|
144 |
-
return gr.Blocks.launch(*args, **kwargs)
|
145 |
-
gr.Blocks.launch = launch
|
146 |
-
|
147 |
-
|
148 |
-
class HTMLError(gr.Error):
|
149 |
-
def __str__(self): # pragma: no cover
|
150 |
-
return self.message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/torch/__init__.py
DELETED
@@ -1,42 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
|
4 |
-
from ...config import Config
|
5 |
-
|
6 |
-
|
7 |
-
try:
|
8 |
-
|
9 |
-
import torch
|
10 |
-
|
11 |
-
except ImportError:
|
12 |
-
|
13 |
-
_patch = lambda *args, **kwargs: None
|
14 |
-
_unpatch = lambda *args, **kwargs: None
|
15 |
-
_pack = lambda *args, **kwargs: None
|
16 |
-
_init = lambda *args, **kwargs: None
|
17 |
-
_size = lambda *args, **kwargs: 0
|
18 |
-
_move = lambda *args, **kwargs: None
|
19 |
-
_is_in_bad_fork = lambda *args, **kwargs: False
|
20 |
-
|
21 |
-
else:
|
22 |
-
|
23 |
-
if Config.zero_gpu_v2:
|
24 |
-
from . import patching as _patching
|
25 |
-
else: # pragma: no cover
|
26 |
-
from . import patching_legacy as _patching
|
27 |
-
|
28 |
-
_patch = _patching.patch
|
29 |
-
_unpatch = _patching.unpatch
|
30 |
-
_pack = _patching.pack
|
31 |
-
_init = _patching.init
|
32 |
-
_size = _patching.size
|
33 |
-
_move = _patching.move
|
34 |
-
_is_in_bad_fork = _patching.is_in_bad_fork
|
35 |
-
|
36 |
-
patch = _patch
|
37 |
-
unpatch = _unpatch
|
38 |
-
pack = _pack
|
39 |
-
init = _init
|
40 |
-
size = _size
|
41 |
-
move = _move
|
42 |
-
is_in_bad_fork = _is_in_bad_fork
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/torch/bitsandbytes.py
DELETED
@@ -1,162 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
# pyright: reportPrivateImportUsage=false
|
4 |
-
|
5 |
-
from __future__ import annotations
|
6 |
-
|
7 |
-
import importlib
|
8 |
-
from contextlib import contextmanager
|
9 |
-
from importlib import metadata
|
10 |
-
from types import ModuleType
|
11 |
-
from typing import TYPE_CHECKING
|
12 |
-
from typing import Tuple
|
13 |
-
|
14 |
-
import torch
|
15 |
-
from packaging import version
|
16 |
-
|
17 |
-
if TYPE_CHECKING:
|
18 |
-
import torch as Torch
|
19 |
-
|
20 |
-
|
21 |
-
@contextmanager
|
22 |
-
def cuda_unavailable(torch: ModuleType):
|
23 |
-
_is_available = torch.cuda.is_available
|
24 |
-
torch.cuda.is_available = lambda: False
|
25 |
-
yield
|
26 |
-
torch.cuda.is_available = _is_available
|
27 |
-
|
28 |
-
|
29 |
-
def maybe_import_bitsandbytes():
|
30 |
-
try:
|
31 |
-
import torch
|
32 |
-
except ImportError: # pragma: no cover
|
33 |
-
return None
|
34 |
-
with cuda_unavailable(torch):
|
35 |
-
try:
|
36 |
-
import bitsandbytes
|
37 |
-
except ImportError:
|
38 |
-
bitsandbytes = None
|
39 |
-
else:
|
40 |
-
if (bnb_version := version.parse(metadata.version('bitsandbytes'))) < version.parse('0.40.0'):
|
41 |
-
raise RuntimeError(f"ZeroGPU requires bitsandbytes >= 0.40.0 (installed: {bnb_version})") # pragma: no cover
|
42 |
-
print("↑ Those bitsandbytes warnings are expected on ZeroGPU ↑")
|
43 |
-
return bitsandbytes
|
44 |
-
|
45 |
-
|
46 |
-
if (bnb := maybe_import_bitsandbytes()):
|
47 |
-
|
48 |
-
from torch.utils.weak import WeakTensorKeyDictionary
|
49 |
-
|
50 |
-
with cuda_unavailable(torch):
|
51 |
-
from bitsandbytes import cextension
|
52 |
-
from bitsandbytes import functional
|
53 |
-
try: # bitsandbytes < 0.44
|
54 |
-
from bitsandbytes.cuda_setup.main import CUDASetup
|
55 |
-
except ModuleNotFoundError: # pragma: no cover
|
56 |
-
CUDASetup = None
|
57 |
-
from bitsandbytes.nn import Int8Params
|
58 |
-
from bitsandbytes.nn import Params4bit
|
59 |
-
|
60 |
-
_param_to_8bit = Int8Params.to # type: ignore
|
61 |
-
_param_cuda_8bit = Int8Params.cuda
|
62 |
-
_param_to_4bit = Params4bit.to # type: ignore
|
63 |
-
_param_cuda_4bit = Params4bit.cuda
|
64 |
-
|
65 |
-
TensorToArgs = Tuple[torch.device, torch.dtype, bool, torch.memory_format]
|
66 |
-
|
67 |
-
to_ops_8bit: dict[Int8Params, TensorToArgs | None] = WeakTensorKeyDictionary() # type: ignore
|
68 |
-
to_ops_4bit: dict[Params4bit, TensorToArgs | None] = WeakTensorKeyDictionary() # type: ignore
|
69 |
-
|
70 |
-
def _to_op_register_8bit(self: Int8Params, *args, **kwargs):
|
71 |
-
parsed = torch._C._nn._parse_to(*args, **kwargs)
|
72 |
-
device, *_ = parsed
|
73 |
-
if not isinstance(device, torch.device): # pragma: no cover
|
74 |
-
return _param_to_8bit(self, *args, **kwargs)
|
75 |
-
if device.type != 'cuda':
|
76 |
-
return _param_to_8bit(self, *args, **kwargs)
|
77 |
-
to_ops_8bit[self] = parsed
|
78 |
-
return self
|
79 |
-
|
80 |
-
def _to_op_register_4bit(self: Params4bit, *args, **kwargs):
|
81 |
-
parsed = torch._C._nn._parse_to(*args, **kwargs)
|
82 |
-
device, *_ = parsed
|
83 |
-
if not isinstance(device, torch.device): # pragma: no cover
|
84 |
-
return _param_to_4bit(self, *args, **kwargs)
|
85 |
-
if device.type != 'cuda':
|
86 |
-
return _param_to_4bit(self, *args, **kwargs)
|
87 |
-
to_ops_4bit[self] = parsed
|
88 |
-
return self
|
89 |
-
|
90 |
-
def _cuda_op_arg_check(device: Torch.device | int | str | None) -> bool:
|
91 |
-
if device is None: # pragma: no cover
|
92 |
-
return True
|
93 |
-
if isinstance(device, int):
|
94 |
-
return True
|
95 |
-
if isinstance(device, str): # pragma: no cover
|
96 |
-
device = torch.device(device)
|
97 |
-
return device.type == 'cuda' # pragma: no cover
|
98 |
-
|
99 |
-
def _cuda_op_register_8bit(self: Int8Params, device: Torch.device | int | str | None = None, **kwargs):
|
100 |
-
if not _cuda_op_arg_check(device): # pragma: no cover
|
101 |
-
# Let PyTorch handle the fail
|
102 |
-
return _param_cuda_8bit(self, device, **kwargs)
|
103 |
-
to_ops_8bit[self] = None
|
104 |
-
return self
|
105 |
-
|
106 |
-
def _cuda_op_register_4bit(self: Params4bit, device: Torch.device | int | str | None = None, **kwargs):
|
107 |
-
if not _cuda_op_arg_check(device): # pragma: no cover
|
108 |
-
# Let PyTorch handle the fail
|
109 |
-
return _param_cuda_4bit(self, device, **kwargs)
|
110 |
-
to_ops_4bit[self] = None
|
111 |
-
return self
|
112 |
-
|
113 |
-
def _patch():
|
114 |
-
Int8Params.to = _to_op_register_8bit # type: ignore
|
115 |
-
Int8Params.cuda = _cuda_op_register_8bit # type: ignore
|
116 |
-
Params4bit.to = _to_op_register_4bit # type: ignore
|
117 |
-
Params4bit.cuda = _cuda_op_register_4bit # type: ignore
|
118 |
-
|
119 |
-
def _unpatch():
|
120 |
-
Int8Params.to = _param_to_8bit # type: ignore
|
121 |
-
Int8Params.cuda = _param_cuda_8bit
|
122 |
-
Params4bit.to = _param_to_4bit # type: ignore
|
123 |
-
Params4bit.cuda = _param_cuda_4bit
|
124 |
-
|
125 |
-
def _move():
|
126 |
-
if CUDASetup is not None:
|
127 |
-
CUDASetup._instance = None
|
128 |
-
importlib.reload(cextension)
|
129 |
-
functional.lib = cextension.lib
|
130 |
-
for op in to_ops_8bit.items():
|
131 |
-
tensor, parsed_args = op
|
132 |
-
if parsed_args:
|
133 |
-
_, dtype, _, memory_format = parsed_args
|
134 |
-
else:
|
135 |
-
dtype, memory_format = None, None
|
136 |
-
tensor.data = _param_to_8bit(tensor,
|
137 |
-
device='cuda',
|
138 |
-
dtype=dtype,
|
139 |
-
memory_format=memory_format,
|
140 |
-
) # type: ignore
|
141 |
-
for op in to_ops_4bit.items():
|
142 |
-
tensor, parsed_args = op
|
143 |
-
if parsed_args:
|
144 |
-
_, dtype, _, memory_format = parsed_args
|
145 |
-
else:
|
146 |
-
dtype, memory_format = None, None
|
147 |
-
tensor.data = _param_to_4bit(tensor,
|
148 |
-
device='cuda',
|
149 |
-
dtype=dtype,
|
150 |
-
memory_format=memory_format,
|
151 |
-
) # type: ignore
|
152 |
-
|
153 |
-
else:
|
154 |
-
|
155 |
-
_patch = lambda: None
|
156 |
-
_unpatch = lambda: None
|
157 |
-
_move = lambda: None
|
158 |
-
|
159 |
-
|
160 |
-
patch = _patch
|
161 |
-
unpatch = _unpatch
|
162 |
-
move = _move
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/torch/packing.py
DELETED
@@ -1,209 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import time
|
6 |
-
|
7 |
-
import ctypes
|
8 |
-
import os
|
9 |
-
from concurrent.futures import as_completed
|
10 |
-
from concurrent.futures import ThreadPoolExecutor
|
11 |
-
from contextvars import copy_context
|
12 |
-
from dataclasses import dataclass
|
13 |
-
from queue import Queue
|
14 |
-
from typing import Callable
|
15 |
-
|
16 |
-
from ...utils import debug
|
17 |
-
|
18 |
-
import torch
|
19 |
-
from typing_extensions import TypeAlias
|
20 |
-
|
21 |
-
|
22 |
-
PAGE_SIZE = 4096
|
23 |
-
TOTAL_MEMORY = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES')
|
24 |
-
VM_MAX_SIZE = min(2**38, TOTAL_MEMORY // 2)
|
25 |
-
|
26 |
-
BUFFER_SIZE = 64 * 2**20
|
27 |
-
BUFFER_COUNT = 2
|
28 |
-
|
29 |
-
|
30 |
-
TensorWithSizes: TypeAlias = 'tuple[torch.Tensor, int, int]'
|
31 |
-
|
32 |
-
@dataclass
|
33 |
-
class ZeroGPUTensorPack:
|
34 |
-
base_dir: str
|
35 |
-
batches: list[list[TensorWithSizes]]
|
36 |
-
big_tensors: list[TensorWithSizes]
|
37 |
-
fakes: dict[torch.Tensor, list[torch.Tensor]]
|
38 |
-
total_size: int
|
39 |
-
def path(self):
|
40 |
-
return f'{self.base_dir}/{id(self)}'
|
41 |
-
def __del__(self):
|
42 |
-
try:
|
43 |
-
os.remove(self.path())
|
44 |
-
except FileNotFoundError: # pragma: no cover
|
45 |
-
pass
|
46 |
-
|
47 |
-
|
48 |
-
def write(fd: int, tensor: torch.Tensor):
|
49 |
-
clone = torch.empty_like(tensor)
|
50 |
-
size = clone.untyped_storage().size() # pyright: ignore [reportAttributeAccessIssue]
|
51 |
-
buffer = torch.UntypedStorage(VM_MAX_SIZE)
|
52 |
-
buffer_ptr = buffer.data_ptr()
|
53 |
-
offset = -buffer_ptr % PAGE_SIZE
|
54 |
-
padding = -size % PAGE_SIZE
|
55 |
-
clone.set_(buffer[offset:offset+size], 0, clone.shape, clone.stride()) # pyright: ignore [reportArgumentType]
|
56 |
-
clone.copy_(tensor)
|
57 |
-
mv = memoryview((ctypes.c_char * (size+padding)).from_address(buffer_ptr+offset))
|
58 |
-
written_bytes = 0
|
59 |
-
while written_bytes < size:
|
60 |
-
written_bytes += os.write(fd, mv[written_bytes:])
|
61 |
-
|
62 |
-
|
63 |
-
def pack_tensors(
|
64 |
-
tensors: set[torch.Tensor],
|
65 |
-
fakes: dict[torch.Tensor, list[torch.Tensor]],
|
66 |
-
offload_dir: str,
|
67 |
-
callback: Callable[[int]] | None = None,
|
68 |
-
):
|
69 |
-
|
70 |
-
callback = (lambda bytes: None) if callback is None else callback
|
71 |
-
|
72 |
-
batches: list[list[TensorWithSizes]] = []
|
73 |
-
big_tensors: list[TensorWithSizes] = []
|
74 |
-
|
75 |
-
tensors_with_sizes: list[tuple[torch.Tensor, int, int]] = []
|
76 |
-
for tensor in tensors:
|
77 |
-
size = tensor.numel() * tensor.element_size()
|
78 |
-
aligned_size = size + (-size % PAGE_SIZE)
|
79 |
-
tensors_with_sizes += [(tensor, size, aligned_size)]
|
80 |
-
|
81 |
-
current_batch, current_size = [], 0
|
82 |
-
for (tensor, size, aligned_size) in sorted(tensors_with_sizes, key=lambda item: item[2]):
|
83 |
-
if aligned_size > BUFFER_SIZE:
|
84 |
-
big_tensors += [(tensor, size, aligned_size)]
|
85 |
-
continue
|
86 |
-
current_size += aligned_size
|
87 |
-
if current_size > BUFFER_SIZE:
|
88 |
-
batches += [current_batch]
|
89 |
-
current_batch, current_size = [(tensor, size, aligned_size)], aligned_size
|
90 |
-
else:
|
91 |
-
current_batch += [(tensor, size, aligned_size)]
|
92 |
-
|
93 |
-
if current_batch:
|
94 |
-
batches += [current_batch]
|
95 |
-
|
96 |
-
get_meta = {tensor: torch.empty_like(tensor) for tensor in tensors}
|
97 |
-
batches_meta = [[(get_meta[tensor], size, asize) for tensor, size, asize in batch] for batch in batches]
|
98 |
-
big_tensors_meta = [(get_meta[tensor], size, asize) for tensor, size, asize in big_tensors]
|
99 |
-
fakes_meta = {get_meta[tensor]: fake_list for tensor, fake_list in fakes.items()}
|
100 |
-
|
101 |
-
pack = ZeroGPUTensorPack(
|
102 |
-
base_dir=offload_dir,
|
103 |
-
batches=batches_meta,
|
104 |
-
big_tensors=big_tensors_meta,
|
105 |
-
fakes=fakes_meta,
|
106 |
-
total_size=sum([size for _, size, _ in tensors_with_sizes]),
|
107 |
-
)
|
108 |
-
|
109 |
-
fd = os.open(pack.path(), os.O_CREAT | os.O_WRONLY | os.O_DIRECT)
|
110 |
-
try:
|
111 |
-
total_asize = sum([aligned_size for batch in batches for *_, aligned_size in batch])
|
112 |
-
total_asize += sum([aligned_size for *_, aligned_size in big_tensors])
|
113 |
-
if total_asize > 0:
|
114 |
-
os.posix_fallocate(fd, 0, total_asize)
|
115 |
-
for batch in batches:
|
116 |
-
for tensor, size, _ in batch:
|
117 |
-
write(fd, tensor)
|
118 |
-
callback(size)
|
119 |
-
for tensor, size, _ in big_tensors:
|
120 |
-
write(fd, tensor)
|
121 |
-
callback(size)
|
122 |
-
return pack
|
123 |
-
finally:
|
124 |
-
os.close(fd)
|
125 |
-
|
126 |
-
|
127 |
-
def pack_to_cuda(pack: ZeroGPUTensorPack, callback: Callable[[int]] | None = None):
|
128 |
-
|
129 |
-
callback = (lambda bytes: None) if callback is None else callback
|
130 |
-
|
131 |
-
free_buffers: Queue[torch.Tensor] = Queue()
|
132 |
-
read_buffers: Queue[torch.Tensor] = Queue()
|
133 |
-
|
134 |
-
for _ in range(BUFFER_COUNT):
|
135 |
-
free_buffers.put(torch.ByteTensor(BUFFER_SIZE).pin_memory())
|
136 |
-
|
137 |
-
def read(fd: int, buffer: torch.Tensor, size: int):
|
138 |
-
mv = memoryview((ctypes.c_char * size).from_address(buffer.data_ptr()))
|
139 |
-
read_bytes = 0
|
140 |
-
while read_bytes < size:
|
141 |
-
read_bytes += os.readv(fd, [mv[read_bytes:]])
|
142 |
-
|
143 |
-
def disk_to_pin(fd: int):
|
144 |
-
for batch in pack.batches:
|
145 |
-
buffer = free_buffers.get()
|
146 |
-
batch_size = sum([aligned_size for *_, aligned_size in batch])
|
147 |
-
read(fd, buffer, batch_size)
|
148 |
-
read_buffers.put(buffer)
|
149 |
-
for *_, aligned_size in pack.big_tensors:
|
150 |
-
read_bytes = 0
|
151 |
-
while read_bytes < aligned_size:
|
152 |
-
buffer = free_buffers.get()
|
153 |
-
read_size = min(BUFFER_SIZE, aligned_size - read_bytes)
|
154 |
-
read(fd, buffer, read_size)
|
155 |
-
read_buffers.put(buffer)
|
156 |
-
read_bytes += read_size
|
157 |
-
|
158 |
-
def pin_to_cuda():
|
159 |
-
total_duration_in_callback = 0
|
160 |
-
for batch in pack.batches:
|
161 |
-
buffer = read_buffers.get()
|
162 |
-
offset = 0
|
163 |
-
cuda_storages = []
|
164 |
-
for tensor, size, aligned_size in batch:
|
165 |
-
cuda_storages += [buffer[offset:offset+size].cuda(non_blocking=True)]
|
166 |
-
offset += aligned_size
|
167 |
-
torch.cuda.synchronize()
|
168 |
-
free_buffers.put(buffer)
|
169 |
-
batch_total_size = 0
|
170 |
-
for (tensor, size, _), cuda_storage in zip(batch, cuda_storages):
|
171 |
-
cuda_tensor = torch.tensor([], dtype=tensor.dtype, device='cuda')
|
172 |
-
cuda_tensor = cuda_tensor.set_(cuda_storage.untyped_storage(), 0, tensor.shape, tensor.stride())
|
173 |
-
for fake in pack.fakes[tensor]:
|
174 |
-
fake.data = cuda_tensor
|
175 |
-
batch_total_size += size
|
176 |
-
t0 = time.perf_counter()
|
177 |
-
callback(batch_total_size)
|
178 |
-
total_duration_in_callback += time.perf_counter() - t0
|
179 |
-
for tensor, size, _ in pack.big_tensors:
|
180 |
-
cuda_storage = torch.empty(size, dtype=torch.uint8, device='cuda')
|
181 |
-
offset = 0
|
182 |
-
while offset < size:
|
183 |
-
buffer = read_buffers.get()
|
184 |
-
read_size = min(BUFFER_SIZE, size - offset)
|
185 |
-
cuda_storage[offset:offset+read_size] = buffer[:read_size]
|
186 |
-
offset += read_size
|
187 |
-
torch.cuda.synchronize() # Probably not needed
|
188 |
-
free_buffers.put(buffer)
|
189 |
-
t0 = time.perf_counter()
|
190 |
-
callback(read_size)
|
191 |
-
total_duration_in_callback += time.perf_counter() - t0
|
192 |
-
cuda_tensor = torch.tensor([], dtype=tensor.dtype, device='cuda')
|
193 |
-
cuda_tensor = cuda_tensor.set_(cuda_storage.untyped_storage(), 0, tensor.shape, tensor.stride())
|
194 |
-
for fake in pack.fakes[tensor]:
|
195 |
-
fake.data = cuda_tensor
|
196 |
-
|
197 |
-
debug(f"{total_duration_in_callback=}")
|
198 |
-
|
199 |
-
with ThreadPoolExecutor(2) as e:
|
200 |
-
fd = os.open(pack.path(), os.O_RDONLY | os.O_DIRECT)
|
201 |
-
try:
|
202 |
-
futures = [
|
203 |
-
e.submit(copy_context().run, disk_to_pin, fd),
|
204 |
-
e.submit(copy_context().run, pin_to_cuda),
|
205 |
-
]
|
206 |
-
for future in as_completed(futures):
|
207 |
-
future.result()
|
208 |
-
finally:
|
209 |
-
os.close(fd)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/torch/patching.py
DELETED
@@ -1,386 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
# pyright: reportPrivateImportUsage=false
|
4 |
-
|
5 |
-
from __future__ import annotations
|
6 |
-
|
7 |
-
import gc
|
8 |
-
import multiprocessing
|
9 |
-
import os
|
10 |
-
from collections import defaultdict
|
11 |
-
from concurrent.futures import ProcessPoolExecutor
|
12 |
-
from concurrent.futures import ThreadPoolExecutor
|
13 |
-
from contextlib import nullcontext
|
14 |
-
from contextvars import copy_context
|
15 |
-
from types import SimpleNamespace
|
16 |
-
from typing import Any
|
17 |
-
from typing import Callable
|
18 |
-
|
19 |
-
import torch
|
20 |
-
from torch.overrides import TorchFunctionMode
|
21 |
-
from torch.overrides import resolve_name
|
22 |
-
from torch.utils._python_dispatch import TorchDispatchMode
|
23 |
-
from torch.utils._pytree import tree_map_only
|
24 |
-
from torch.utils.weak import WeakTensorKeyDictionary
|
25 |
-
|
26 |
-
from ...config import Config
|
27 |
-
from ...utils import malloc_trim
|
28 |
-
from ..tqdm import tqdm
|
29 |
-
from . import bitsandbytes
|
30 |
-
from .packing import ZeroGPUTensorPack
|
31 |
-
from .packing import pack_tensors
|
32 |
-
from .packing import pack_to_cuda
|
33 |
-
from .types import AliasId
|
34 |
-
|
35 |
-
|
36 |
-
# Nvidia A100.80G MIG (drivers 535) / Torch 2.2.0
|
37 |
-
CUDA_DEVICE_NAME = 'NVIDIA A100-SXM4-80GB MIG 3g.40gb'
|
38 |
-
CUDA_TOTAL_MEMORY = 42144366592
|
39 |
-
CUDA_MEM_GET_INFO = (41911451648, CUDA_TOTAL_MEMORY)
|
40 |
-
CUDA_DEVICE_CAPABILITY = (8, 0)
|
41 |
-
CUDA_DEVICE_PROPERTIES = SimpleNamespace(name=CUDA_DEVICE_NAME, major=8, minor=0, total_memory=CUDA_TOTAL_MEMORY, multi_processor_count=42)
|
42 |
-
|
43 |
-
OPS_INPUTS_CHECK_NO_RETURN = (
|
44 |
-
torch.Tensor.equal,
|
45 |
-
)
|
46 |
-
|
47 |
-
OPS_INPUT_CHECK_SELF_RETURN = (
|
48 |
-
torch.Tensor.set_, # probably never dispatched
|
49 |
-
torch.ops.aten.set_.source_Tensor, # pyright: ignore [reportAttributeAccessIssue]
|
50 |
-
)
|
51 |
-
|
52 |
-
OFFLOADED_ERROR_MESSAGE = "Cannot apply function {} on disk-offloaded Tensor {}"
|
53 |
-
|
54 |
-
_tensor_make_subclass = torch.Tensor._make_subclass
|
55 |
-
_asarray = torch.asarray
|
56 |
-
_cuda_init = torch._C._cuda_init
|
57 |
-
_cuda_exchange_device = torch.cuda._exchange_device
|
58 |
-
_cuda_available = torch.cuda.is_available
|
59 |
-
_cuda_device_count = torch.cuda.device_count
|
60 |
-
_cuda_current_device = torch.cuda.current_device
|
61 |
-
_cuda_mem_get_info = torch.cuda.mem_get_info
|
62 |
-
_cuda_get_device_capability = torch.cuda.get_device_capability
|
63 |
-
_cuda_get_device_properties = torch.cuda.get_device_properties
|
64 |
-
_cuda_get_device_name = torch.cuda.get_device_name
|
65 |
-
|
66 |
-
# PyTorch 2.3
|
67 |
-
_cuda_maybe_exchange_device = getattr(torch.cuda, '_maybe_exchange_device', None)
|
68 |
-
|
69 |
-
|
70 |
-
cuda_aliases: dict[torch.Tensor, torch.Tensor | None] = WeakTensorKeyDictionary() # pyright: ignore [reportAssignmentType]
|
71 |
-
|
72 |
-
tensor_packs: list[ZeroGPUTensorPack] = []
|
73 |
-
|
74 |
-
class ZeroGPUTensor(torch.Tensor):
|
75 |
-
pass
|
76 |
-
|
77 |
-
def empty_fake(tensor: torch.Tensor):
|
78 |
-
fake = torch.empty_like(tensor, requires_grad=tensor.requires_grad)
|
79 |
-
if fake.__class__ != tensor.__class__:
|
80 |
-
fake = _tensor_make_subclass(tensor.__class__, fake, require_grad=tensor.requires_grad) # pyright: ignore [reportArgumentType]
|
81 |
-
return fake
|
82 |
-
|
83 |
-
class ZeroGPUFunctionMode(TorchFunctionMode):
|
84 |
-
|
85 |
-
def __torch_function__(self, func, types, args=(), kwargs: dict[str, Any] | None = None):
|
86 |
-
|
87 |
-
kwargs = {} if kwargs is None else kwargs
|
88 |
-
|
89 |
-
if func == torch._C._nn._parse_to:
|
90 |
-
return func(*args, **kwargs)
|
91 |
-
|
92 |
-
# Redispatch: tensor.cuda() -> tensor.to(device='cuda')
|
93 |
-
if func == torch.Tensor.cuda or func == torch.Tensor.cpu:
|
94 |
-
memory_format = kwargs.get('memory_format')
|
95 |
-
return self.__torch_function__(torch.Tensor.to, types, (args[0],), {
|
96 |
-
'device': 'cuda' if func == torch.Tensor.cuda else 'cpu',
|
97 |
-
**({'memory_format': memory_format} if memory_format is not None else {}),
|
98 |
-
})
|
99 |
-
|
100 |
-
# Redispatch: tensor.to('cuda') -> tensor.to(device='cuda')
|
101 |
-
if func == torch.Tensor.to and len(args) > 1:
|
102 |
-
device, dtype, _, memory_format = torch._C._nn._parse_to(*args[1:], **kwargs)
|
103 |
-
return self.__torch_function__(torch.Tensor.to, types, (args[0],), {
|
104 |
-
'device': device,
|
105 |
-
'dtype': dtype,
|
106 |
-
'memory_format': memory_format,
|
107 |
-
})
|
108 |
-
|
109 |
-
if func == torch.Tensor.data.__set__: # pyright: ignore [reportAttributeAccessIssue]
|
110 |
-
self, target = args
|
111 |
-
if target in cuda_aliases:
|
112 |
-
if (target_original := cuda_aliases[target]) is None:
|
113 |
-
raise Exception(OFFLOADED_ERROR_MESSAGE.format(resolve_name(func), target))
|
114 |
-
original = empty_fake(self)
|
115 |
-
original.data = target_original
|
116 |
-
cuda_aliases[self] = original
|
117 |
-
elif self in cuda_aliases:
|
118 |
-
del cuda_aliases[self]
|
119 |
-
self.data = target
|
120 |
-
return
|
121 |
-
|
122 |
-
if func == torch.Tensor.device.__get__:
|
123 |
-
tensor, = args
|
124 |
-
if tensor in cuda_aliases:
|
125 |
-
return torch.device('cuda', index=0)
|
126 |
-
|
127 |
-
elif func == torch.Tensor.__repr__:
|
128 |
-
tensor, = args
|
129 |
-
if tensor in cuda_aliases:
|
130 |
-
if (original := cuda_aliases[tensor]) is None:
|
131 |
-
original = tensor.to('meta')
|
132 |
-
original_class = original.__class__
|
133 |
-
original.__class__ = ZeroGPUTensor
|
134 |
-
try:
|
135 |
-
return func(original, **kwargs)
|
136 |
-
finally:
|
137 |
-
original.__class__ = original_class
|
138 |
-
|
139 |
-
elif func == torch.Tensor.untyped_storage:
|
140 |
-
tensor, = args
|
141 |
-
if tensor in cuda_aliases:
|
142 |
-
if (original := cuda_aliases[tensor]) is None:
|
143 |
-
raise Exception(OFFLOADED_ERROR_MESSAGE.format(resolve_name(func), tensor))
|
144 |
-
res = func(original, **kwargs)
|
145 |
-
res._zerogpu = True
|
146 |
-
return res
|
147 |
-
|
148 |
-
cuda: bool | None = None
|
149 |
-
|
150 |
-
# Handle device kwarg
|
151 |
-
if (device := kwargs.get('device')) is not None:
|
152 |
-
device = torch.device(device)
|
153 |
-
if device.type == 'cuda':
|
154 |
-
kwargs['device'] = torch.device('cpu')
|
155 |
-
cuda = True
|
156 |
-
else:
|
157 |
-
cuda = False
|
158 |
-
|
159 |
-
# Swap fake inputs with original data
|
160 |
-
swapped = {}
|
161 |
-
inputs_are_cuda = set()
|
162 |
-
def swap(tensor: torch.Tensor):
|
163 |
-
nonlocal inputs_are_cuda
|
164 |
-
if tensor not in cuda_aliases:
|
165 |
-
inputs_are_cuda |= {False}
|
166 |
-
return tensor
|
167 |
-
if (original := cuda_aliases[tensor]) is None:
|
168 |
-
raise Exception(OFFLOADED_ERROR_MESSAGE.format(resolve_name(func), tensor))
|
169 |
-
swapped[original] = tensor
|
170 |
-
inputs_are_cuda |= {True}
|
171 |
-
return original
|
172 |
-
args_ = tree_map_only(torch.Tensor, swap, args)
|
173 |
-
kwargs_ = tree_map_only(torch.Tensor, swap, kwargs)
|
174 |
-
if inputs_are_cuda == {True}:
|
175 |
-
if cuda is not False:
|
176 |
-
cuda = True
|
177 |
-
|
178 |
-
res = func(*args_, **kwargs_)
|
179 |
-
|
180 |
-
# Re-generate swapped fakes in case of mutation
|
181 |
-
for original, fake in swapped.items():
|
182 |
-
fake.data = empty_fake(original)
|
183 |
-
|
184 |
-
# Special case for Tensor indexing where only 'self' matters
|
185 |
-
if func in {
|
186 |
-
torch.ops.aten.index.Tensor, # pyright: ignore [reportAttributeAccessIssue]
|
187 |
-
torch.Tensor.__getitem__, # PyTorch 2.4+
|
188 |
-
}:
|
189 |
-
self = args[0]
|
190 |
-
cuda = self in cuda_aliases
|
191 |
-
inputs_are_cuda = {cuda}
|
192 |
-
|
193 |
-
# Emulate device check
|
194 |
-
if isinstance(res, torch.Tensor) or func in OPS_INPUTS_CHECK_NO_RETURN:
|
195 |
-
self = None
|
196 |
-
if len(args_) >= 1 and isinstance(args_[0], torch.Tensor):
|
197 |
-
self = args_[0]
|
198 |
-
# Only raise if func does not return its first input (Tensor.copy_)
|
199 |
-
if res is not self or func in OPS_INPUT_CHECK_SELF_RETURN:
|
200 |
-
if inputs_are_cuda == {True, False}:
|
201 |
-
raise RuntimeError(
|
202 |
-
"Expected all tensors to be on the same device, "
|
203 |
-
"but found at least two devices, cuda:0 (ZeroGPU) and cpu!"
|
204 |
-
)
|
205 |
-
|
206 |
-
# Register output
|
207 |
-
def register(tensor: torch.Tensor):
|
208 |
-
if tensor in swapped and cuda is not False:
|
209 |
-
return swapped[tensor]
|
210 |
-
if cuda is not True:
|
211 |
-
return tensor
|
212 |
-
fake = empty_fake(tensor)
|
213 |
-
cuda_aliases[fake] = tensor
|
214 |
-
return fake
|
215 |
-
|
216 |
-
return tree_map_only(torch.Tensor, register, res)
|
217 |
-
|
218 |
-
# When enabling DispatchMode, some aten ops are dispatched to FunctionMode
|
219 |
-
# We are using it for aten.alias.default and aten.set_.source_Tensor
|
220 |
-
class DefaultDispatchMode(TorchDispatchMode):
|
221 |
-
def __torch_dispatch__(self, func, types, args=(), kwargs: dict[str, Any] | None = None):
|
222 |
-
return func(*args, **(kwargs or {}))
|
223 |
-
|
224 |
-
|
225 |
-
function_mode = ZeroGPUFunctionMode()
|
226 |
-
dispatch_mode = DefaultDispatchMode()
|
227 |
-
|
228 |
-
|
229 |
-
def _untyped_storage_new_register(*args, **kwargs):
|
230 |
-
cuda = False
|
231 |
-
if (device := kwargs.get('device')) is not None and device.type == 'cuda':
|
232 |
-
cuda = True
|
233 |
-
del kwargs['device']
|
234 |
-
storage = torch._C.StorageBase.__new__(*args, **kwargs)
|
235 |
-
if cuda:
|
236 |
-
storage._zerogpu = True
|
237 |
-
return storage
|
238 |
-
|
239 |
-
@property
|
240 |
-
def _untyped_storage_device(self):
|
241 |
-
if hasattr(self, '_zerogpu'):
|
242 |
-
return torch.device('cuda', index=0)
|
243 |
-
return torch._C.StorageBase.device.__get__(self) # pyright: ignore [reportAttributeAccessIssue]
|
244 |
-
|
245 |
-
# Force dispatch
|
246 |
-
def _tensor_make_subclass_function_mode(*args, **kwargs):
|
247 |
-
with torch._C.DisableTorchFunction():
|
248 |
-
return function_mode.__torch_function__(_tensor_make_subclass, (), args=args, kwargs=kwargs)
|
249 |
-
def _asarray_function_mode(*args, **kwargs):
|
250 |
-
with torch._C.DisableTorchFunction():
|
251 |
-
return function_mode.__torch_function__(_asarray, (), args=args, kwargs=kwargs)
|
252 |
-
|
253 |
-
def _cuda_init_raise():
|
254 |
-
raise RuntimeError(
|
255 |
-
"CUDA must not be initialized in the main process "
|
256 |
-
"on Spaces with Stateless GPU environment.\n"
|
257 |
-
"You can look at this Stacktrace to find out "
|
258 |
-
"which part of your code triggered a CUDA init"
|
259 |
-
)
|
260 |
-
|
261 |
-
def _cuda_dummy_exchange_device(device):
|
262 |
-
assert device in {-1, 0}
|
263 |
-
return device
|
264 |
-
|
265 |
-
def patch():
|
266 |
-
function_mode.__enter__()
|
267 |
-
dispatch_mode.__enter__()
|
268 |
-
# TODO: only patch bellow methods on current Thread to be consistent with TorchModes
|
269 |
-
# (or hijack threading.Thread.__init__ to force Modes on all threads)
|
270 |
-
torch.Tensor._make_subclass = _tensor_make_subclass_function_mode # pyright: ignore [reportAttributeAccessIssue]
|
271 |
-
torch.UntypedStorage.__new__ = _untyped_storage_new_register
|
272 |
-
torch.UntypedStorage.device = _untyped_storage_device # pyright: ignore [reportAttributeAccessIssue]
|
273 |
-
torch.asarray = _asarray_function_mode
|
274 |
-
torch._C._cuda_init = _cuda_init_raise
|
275 |
-
torch.cuda._exchange_device = _cuda_dummy_exchange_device
|
276 |
-
torch.cuda.is_available = lambda: True
|
277 |
-
torch.cuda.device_count = lambda: 1
|
278 |
-
torch.cuda.current_device = lambda: 0
|
279 |
-
torch.cuda.mem_get_info = lambda *args, **kwargs: CUDA_MEM_GET_INFO
|
280 |
-
torch.cuda.get_device_capability = lambda *args, **kwargs: CUDA_DEVICE_CAPABILITY
|
281 |
-
torch.cuda.get_device_properties = lambda *args, **kwargs: CUDA_DEVICE_PROPERTIES
|
282 |
-
torch.cuda.get_device_name = lambda *args, **kwargs: CUDA_DEVICE_NAME
|
283 |
-
# PyTorch 2.3
|
284 |
-
if _cuda_maybe_exchange_device is not None: # pragma: no cover
|
285 |
-
setattr(torch.cuda, '_maybe_exchange_device', _cuda_dummy_exchange_device)
|
286 |
-
bitsandbytes.patch()
|
287 |
-
|
288 |
-
def unpatch():
|
289 |
-
try:
|
290 |
-
dispatch_mode.__exit__(None, None, None)
|
291 |
-
function_mode.__exit__(None, None, None)
|
292 |
-
except RuntimeError:
|
293 |
-
pass # patch() and unpatch() called from != threads
|
294 |
-
torch.Tensor._make_subclass = _tensor_make_subclass
|
295 |
-
torch.UntypedStorage.__new__ = torch._C.StorageBase.__new__
|
296 |
-
torch.UntypedStorage.device = torch._C.StorageBase.device # pyright: ignore [reportAttributeAccessIssue]
|
297 |
-
torch.asarray = _asarray
|
298 |
-
torch._C._cuda_init = _cuda_init
|
299 |
-
torch.cuda._exchange_device = _cuda_exchange_device
|
300 |
-
torch.cuda.is_available = _cuda_available
|
301 |
-
torch.cuda.device_count = _cuda_device_count
|
302 |
-
torch.cuda.current_device = _cuda_current_device
|
303 |
-
torch.cuda.mem_get_info = _cuda_mem_get_info
|
304 |
-
torch.cuda.get_device_capability = _cuda_get_device_capability
|
305 |
-
torch.cuda.get_device_properties = _cuda_get_device_properties
|
306 |
-
torch.cuda.get_device_name = _cuda_get_device_name
|
307 |
-
# PyTorch 2.3
|
308 |
-
if _cuda_maybe_exchange_device is not None: # pragma: no cover
|
309 |
-
setattr(torch.cuda, '_maybe_exchange_device', _cuda_exchange_device)
|
310 |
-
bitsandbytes.unpatch()
|
311 |
-
|
312 |
-
|
313 |
-
def _total_unpacked_size():
|
314 |
-
tensors = [tensor for tensor in cuda_aliases.values() if tensor is not None]
|
315 |
-
deduped = {AliasId.from_tensor(tensor): tensor for tensor in tensors}
|
316 |
-
return sum([tensor.numel() * tensor.element_size() for tensor in deduped.values()])
|
317 |
-
|
318 |
-
|
319 |
-
def _pack(offload_dir: str):
|
320 |
-
# Pack to disk
|
321 |
-
originals: set[torch.Tensor] = set()
|
322 |
-
originals_dedup: dict[AliasId, torch.Tensor] = {}
|
323 |
-
fakes: dict[torch.Tensor, list[torch.Tensor]] = defaultdict(list)
|
324 |
-
for fake, original in cuda_aliases.items():
|
325 |
-
# TODO filter-out sparse Tensors
|
326 |
-
if original is not None:
|
327 |
-
original_id = AliasId.from_tensor(original)
|
328 |
-
if original_id not in originals_dedup:
|
329 |
-
originals_dedup[original_id] = original
|
330 |
-
originals |= {original}
|
331 |
-
fakes[originals_dedup[original_id]] += [fake]
|
332 |
-
progress = tqdm(
|
333 |
-
total=_total_unpacked_size(),
|
334 |
-
unit='B',
|
335 |
-
unit_scale=True,
|
336 |
-
desc="ZeroGPU tensors packing",
|
337 |
-
) if tqdm is not None else nullcontext()
|
338 |
-
with progress as progress:
|
339 |
-
update = progress.update if progress is not None else lambda _: None
|
340 |
-
pack = pack_tensors(originals, fakes, offload_dir, callback=update)
|
341 |
-
tensor_packs.append(pack)
|
342 |
-
# Free memory
|
343 |
-
for fake_list in fakes.values():
|
344 |
-
for fake in fake_list:
|
345 |
-
cuda_aliases[fake] = None
|
346 |
-
|
347 |
-
def pack():
|
348 |
-
_pack(Config.zerogpu_offload_dir)
|
349 |
-
gc.collect()
|
350 |
-
malloc_trim()
|
351 |
-
|
352 |
-
def init(nvidia_uuid: str):
|
353 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = nvidia_uuid
|
354 |
-
torch.Tensor([0]).cuda()
|
355 |
-
|
356 |
-
def size():
|
357 |
-
return _total_unpacked_size() + sum([pack.total_size for pack in tensor_packs])
|
358 |
-
|
359 |
-
def _move(callback: Callable[[int]] | None = None):
|
360 |
-
callback = callback if callback is not None else lambda _: None
|
361 |
-
# CPU -> CUDA
|
362 |
-
moved: dict[AliasId, torch.Tensor] = {}
|
363 |
-
for fake, original in cuda_aliases.items():
|
364 |
-
if original is not None:
|
365 |
-
original_id = AliasId.from_tensor(original)
|
366 |
-
if original_id not in moved:
|
367 |
-
moved[original_id] = original.cuda()
|
368 |
-
callback(fake.numel() * fake.element_size())
|
369 |
-
for fake, original in cuda_aliases.items():
|
370 |
-
if original is not None:
|
371 |
-
fake.data = moved[AliasId.from_tensor(original)]
|
372 |
-
# Disk -> CUDA
|
373 |
-
for tensor_pack in tensor_packs:
|
374 |
-
pack_to_cuda(tensor_pack, callback=callback)
|
375 |
-
bitsandbytes.move()
|
376 |
-
|
377 |
-
def move(callback: Callable[[int]] | None = None):
|
378 |
-
callback = callback if callback is not None else lambda _: None
|
379 |
-
with ThreadPoolExecutor(1) as e:
|
380 |
-
e.submit(copy_context().run, _move, callback=callback).result()
|
381 |
-
torch.cuda.synchronize()
|
382 |
-
|
383 |
-
def is_in_bad_fork():
|
384 |
-
with ProcessPoolExecutor(mp_context=multiprocessing.get_context('fork')) as e:
|
385 |
-
f = e.submit(torch.cuda._is_in_bad_fork)
|
386 |
-
return f.result()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/torch/patching_legacy.py
DELETED
@@ -1,266 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
# pyright: reportPrivateImportUsage=false
|
4 |
-
|
5 |
-
from __future__ import annotations
|
6 |
-
|
7 |
-
import multiprocessing
|
8 |
-
import os
|
9 |
-
from concurrent.futures import ProcessPoolExecutor
|
10 |
-
from contextlib import suppress
|
11 |
-
from functools import partial
|
12 |
-
from types import SimpleNamespace
|
13 |
-
from typing import Any
|
14 |
-
from typing import Callable
|
15 |
-
from typing import Optional
|
16 |
-
from typing import Tuple
|
17 |
-
|
18 |
-
import torch
|
19 |
-
from torch.utils.weak import WeakTensorKeyDictionary
|
20 |
-
|
21 |
-
from ...config import Config
|
22 |
-
from . import bitsandbytes
|
23 |
-
|
24 |
-
|
25 |
-
# Nvidia A100.80G MIG (drivers 535) / Torch 2.2.0
|
26 |
-
CUDA_DEVICE_NAME = 'NVIDIA A100-SXM4-80GB MIG 3g.40gb'
|
27 |
-
CUDA_TOTAL_MEMORY = 42144366592
|
28 |
-
CUDA_MEM_GET_INFO = (41911451648, CUDA_TOTAL_MEMORY)
|
29 |
-
CUDA_DEVICE_CAPABILITY = (8, 0)
|
30 |
-
CUDA_DEVICE_PROPERTIES = SimpleNamespace(name=CUDA_DEVICE_NAME, major=8, minor=0, total_memory=CUDA_TOTAL_MEMORY, multi_processor_count=42)
|
31 |
-
|
32 |
-
GENERIC_METHOD_NAMES = [
|
33 |
-
'arange',
|
34 |
-
'as_tensor',
|
35 |
-
'asarray',
|
36 |
-
'bartlett_window',
|
37 |
-
'blackman_window',
|
38 |
-
'empty',
|
39 |
-
'empty_like',
|
40 |
-
'empty_strided',
|
41 |
-
'eye',
|
42 |
-
'full',
|
43 |
-
'full_like',
|
44 |
-
'hamming_window',
|
45 |
-
'hann_window',
|
46 |
-
'kaiser_window',
|
47 |
-
'linspace',
|
48 |
-
'logspace',
|
49 |
-
'ones',
|
50 |
-
'ones_like',
|
51 |
-
'rand',
|
52 |
-
'rand_like',
|
53 |
-
'randint',
|
54 |
-
'randint_like',
|
55 |
-
'randn',
|
56 |
-
'randn_like',
|
57 |
-
'randperm',
|
58 |
-
'range',
|
59 |
-
'sparse_bsc_tensor',
|
60 |
-
'sparse_bsr_tensor',
|
61 |
-
'sparse_compressed_tensor',
|
62 |
-
'sparse_coo_tensor',
|
63 |
-
'sparse_csc_tensor',
|
64 |
-
'sparse_csr_tensor',
|
65 |
-
'tensor',
|
66 |
-
'tril_indices',
|
67 |
-
'triu_indices',
|
68 |
-
'zeros',
|
69 |
-
'zeros_like',
|
70 |
-
]
|
71 |
-
|
72 |
-
|
73 |
-
TO_CUDA = (torch.device('cuda'), None, False, None)
|
74 |
-
|
75 |
-
_tensor__deepcopy__ = torch.Tensor.__deepcopy__
|
76 |
-
_tensor_to = torch.Tensor.to
|
77 |
-
_tensor_cuda = torch.Tensor.cuda
|
78 |
-
_tensor_cpu = torch.Tensor.cpu
|
79 |
-
_torch_generics = {name: getattr(torch, name) for name in GENERIC_METHOD_NAMES}
|
80 |
-
_cuda_init = torch._C._cuda_init
|
81 |
-
_cuda_available = torch.cuda.is_available
|
82 |
-
_cuda_device_count = torch.cuda.device_count
|
83 |
-
_cuda_current_device = torch.cuda.current_device
|
84 |
-
_cuda_mem_get_info = torch.cuda.mem_get_info
|
85 |
-
_cuda_get_device_capability = torch.cuda.get_device_capability
|
86 |
-
_cuda_get_device_properties = torch.cuda.get_device_properties
|
87 |
-
_cuda_get_device_name = torch.cuda.get_device_name
|
88 |
-
|
89 |
-
TensorToArgs = Tuple[Optional[torch.device], Optional[torch.dtype], bool, Optional[torch.memory_format]]
|
90 |
-
|
91 |
-
to_ops: dict[torch.Tensor, TensorToArgs] = WeakTensorKeyDictionary() # type: ignore
|
92 |
-
|
93 |
-
def _tensor_new_register(*args, **kwargs):
|
94 |
-
new_tensor: torch.Tensor = torch._C._TensorBase.__new__(*args, **kwargs)
|
95 |
-
if (base_tensor := new_tensor._base) is not None:
|
96 |
-
if base_tensor in to_ops:
|
97 |
-
to_ops[new_tensor] = to_ops[base_tensor]
|
98 |
-
return new_tensor
|
99 |
-
|
100 |
-
def _tensor_deepcopy_register(self: torch.Tensor, memo):
|
101 |
-
new_tensor = _tensor__deepcopy__(self, memo)
|
102 |
-
if isinstance(new_tensor, torch.Tensor):
|
103 |
-
if self in to_ops:
|
104 |
-
to_ops[new_tensor] = to_ops[self]
|
105 |
-
return new_tensor
|
106 |
-
|
107 |
-
@property
|
108 |
-
def _tensor_device_property(self: torch.Tensor):
|
109 |
-
if self in to_ops:
|
110 |
-
return torch.device(type='cuda', index=0)
|
111 |
-
del torch.Tensor.device
|
112 |
-
try:
|
113 |
-
return self.device
|
114 |
-
finally:
|
115 |
-
torch.Tensor.device = _tensor_device_property # type: ignore
|
116 |
-
|
117 |
-
@property
|
118 |
-
def _tensor_dtype_property(self: torch.Tensor):
|
119 |
-
if self in to_ops:
|
120 |
-
if (to_dtype := to_ops[self][1]) is not None:
|
121 |
-
return to_dtype
|
122 |
-
del torch.Tensor.dtype
|
123 |
-
try:
|
124 |
-
return self.dtype
|
125 |
-
finally:
|
126 |
-
torch.Tensor.dtype = _tensor_dtype_property # type: ignore
|
127 |
-
|
128 |
-
def _to_op_register(self: torch.Tensor, *args, **kwargs):
|
129 |
-
parsed = torch._C._nn._parse_to(*args, **kwargs)
|
130 |
-
device, dtype, *_ = parsed
|
131 |
-
try:
|
132 |
-
to_args = to_ops.pop(self)
|
133 |
-
except KeyError:
|
134 |
-
to_args = None
|
135 |
-
if device is None: # pyright: ignore [reportUnnecessaryComparison]
|
136 |
-
if to_args is not None:
|
137 |
-
to_ops[self] = (to_args[0], dtype, *to_args[2:])
|
138 |
-
return self
|
139 |
-
return _tensor_to(self, *args, **kwargs)
|
140 |
-
if device.type != 'cuda':
|
141 |
-
if to_args is not None:
|
142 |
-
if (to_dtype := to_args[1]) is not None:
|
143 |
-
kwargs = {'dtype': to_dtype, **kwargs}
|
144 |
-
return _tensor_to(self, *args, **kwargs)
|
145 |
-
to_ops[self] = parsed
|
146 |
-
return self
|
147 |
-
|
148 |
-
def _cuda_op_arg_check(device: torch.device | int | str | None) -> bool:
|
149 |
-
if device is None:
|
150 |
-
return True
|
151 |
-
if isinstance(device, int):
|
152 |
-
return True
|
153 |
-
if isinstance(device, str):
|
154 |
-
device = torch.device(device)
|
155 |
-
return device.type == 'cuda'
|
156 |
-
|
157 |
-
def _cuda_op_register(self: torch.Tensor, device: torch.device | int | str | None = None, **kwargs):
|
158 |
-
if not _cuda_op_arg_check(device):
|
159 |
-
# Let PyTorch handle the fail
|
160 |
-
return _tensor_cuda(self, device, **kwargs)
|
161 |
-
to_ops[self] = TO_CUDA
|
162 |
-
return self
|
163 |
-
|
164 |
-
def _cpu_op_remove(self: torch.Tensor, **kwargs):
|
165 |
-
try:
|
166 |
-
to_args = to_ops.pop(self)
|
167 |
-
except KeyError:
|
168 |
-
to_args = None
|
169 |
-
if to_args is not None:
|
170 |
-
if (to_dtype := to_args[1]) is not None:
|
171 |
-
return _tensor_to(self, 'cpu', **{'dtype': to_dtype, **kwargs})
|
172 |
-
return _tensor_cpu(self, **kwargs)
|
173 |
-
|
174 |
-
def _cuda_init_raise():
|
175 |
-
raise RuntimeError(
|
176 |
-
"CUDA must not be initialized in the main process "
|
177 |
-
"on Spaces with Stateless GPU environment.\n"
|
178 |
-
"You can look at this Stacktrace to find out "
|
179 |
-
"which part of your code triggered a CUDA init"
|
180 |
-
)
|
181 |
-
|
182 |
-
def _generic_method_register(name: str, *args: Any, **kwargs: Any):
|
183 |
-
try:
|
184 |
-
device = torch.device(kwargs.get('device', "cpu"))
|
185 |
-
except Exception:
|
186 |
-
return _torch_generics[name](*args, **kwargs)
|
187 |
-
if device.type != 'cuda':
|
188 |
-
return _torch_generics[name](*args, **kwargs)
|
189 |
-
tensor = _torch_generics[name](*args, **{**kwargs, 'device': "cpu"})
|
190 |
-
to_ops[tensor] = TO_CUDA
|
191 |
-
return tensor
|
192 |
-
|
193 |
-
def patch():
|
194 |
-
torch.Tensor.__deepcopy__ = _tensor_deepcopy_register
|
195 |
-
torch.Tensor.__new__ = _tensor_new_register # pyright: ignore [reportAttributeAccessIssue]
|
196 |
-
torch.Tensor.to = _to_op_register # type: ignore
|
197 |
-
torch.Tensor.cuda = _cuda_op_register # type: ignore
|
198 |
-
torch.Tensor.cpu = _cpu_op_remove # type: ignore
|
199 |
-
if Config.zero_patch_torch_device:
|
200 |
-
torch.Tensor.device = _tensor_device_property # type: ignore
|
201 |
-
torch.Tensor.dtype = _tensor_dtype_property # pyright: ignore [reportAttributeAccessIssue]
|
202 |
-
for name in GENERIC_METHOD_NAMES:
|
203 |
-
setattr(torch, name, partial(_generic_method_register, name))
|
204 |
-
torch._C._cuda_init = _cuda_init_raise
|
205 |
-
torch.cuda.is_available = lambda: True
|
206 |
-
torch.cuda.device_count = lambda: 1
|
207 |
-
torch.cuda.current_device = lambda: 0
|
208 |
-
torch.cuda.mem_get_info = lambda *args, **kwargs: CUDA_MEM_GET_INFO
|
209 |
-
torch.cuda.get_device_capability = lambda *args, **kwargs: CUDA_DEVICE_CAPABILITY
|
210 |
-
torch.cuda.get_device_properties = lambda *args, **kwargs: CUDA_DEVICE_PROPERTIES
|
211 |
-
torch.cuda.get_device_name = lambda *args, **kwargs: CUDA_DEVICE_NAME
|
212 |
-
bitsandbytes.patch()
|
213 |
-
|
214 |
-
def unpatch():
|
215 |
-
torch.Tensor.__deepcopy__ = _tensor__deepcopy__
|
216 |
-
with suppress(AttributeError):
|
217 |
-
del torch.Tensor.__new__
|
218 |
-
torch.Tensor.to = _tensor_to
|
219 |
-
torch.Tensor.cuda = _tensor_cuda
|
220 |
-
torch.Tensor.cpu = _tensor_cpu
|
221 |
-
with suppress(AttributeError):
|
222 |
-
del torch.Tensor.device
|
223 |
-
with suppress(AttributeError):
|
224 |
-
del torch.Tensor.dtype
|
225 |
-
for name in GENERIC_METHOD_NAMES:
|
226 |
-
setattr(torch, name, _torch_generics[name])
|
227 |
-
torch._C._cuda_init = _cuda_init
|
228 |
-
torch.cuda.is_available = _cuda_available
|
229 |
-
torch.cuda.device_count = _cuda_device_count
|
230 |
-
torch.cuda.current_device = _cuda_current_device
|
231 |
-
torch.cuda.mem_get_info = _cuda_mem_get_info
|
232 |
-
torch.cuda.get_device_capability = _cuda_get_device_capability
|
233 |
-
torch.cuda.get_device_properties = _cuda_get_device_properties
|
234 |
-
torch.cuda.get_device_name = _cuda_get_device_name
|
235 |
-
bitsandbytes.unpatch()
|
236 |
-
|
237 |
-
def pack():
|
238 |
-
pass
|
239 |
-
|
240 |
-
def init(nvidia_uuid: str):
|
241 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = nvidia_uuid
|
242 |
-
torch.Tensor([0]).cuda() # CUDA init
|
243 |
-
|
244 |
-
def size():
|
245 |
-
return 0
|
246 |
-
|
247 |
-
def move(callback: Callable[[int]] | None = None):
|
248 |
-
for op in to_ops.items():
|
249 |
-
tensor, parsed_args = op
|
250 |
-
_, dtype, _, memory_format = parsed_args
|
251 |
-
tensor.data = _tensor_to(tensor,
|
252 |
-
device='cuda',
|
253 |
-
dtype=dtype,
|
254 |
-
memory_format=memory_format,
|
255 |
-
) # type: ignore
|
256 |
-
bitsandbytes.move()
|
257 |
-
torch.cuda.synchronize()
|
258 |
-
|
259 |
-
def is_in_bad_fork():
|
260 |
-
with ProcessPoolExecutor(mp_context=multiprocessing.get_context('fork')) as e:
|
261 |
-
f = e.submit(torch.cuda._is_in_bad_fork)
|
262 |
-
return f.result()
|
263 |
-
|
264 |
-
def disable_cuda_intercept():
|
265 |
-
torch.Tensor.to = _tensor_to
|
266 |
-
torch.Tensor.cuda = _tensor_cuda
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/torch/types.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
from typing import NamedTuple
|
6 |
-
|
7 |
-
import torch
|
8 |
-
|
9 |
-
|
10 |
-
class AliasId(NamedTuple):
|
11 |
-
data_ptr: int
|
12 |
-
dtype: torch.dtype
|
13 |
-
shape: tuple[int, ...]
|
14 |
-
stride: tuple[int, ...]
|
15 |
-
|
16 |
-
@classmethod
|
17 |
-
def from_tensor(cls, tensor: torch.Tensor):
|
18 |
-
return cls(
|
19 |
-
tensor.data_ptr(),
|
20 |
-
tensor.dtype,
|
21 |
-
tensor.shape,
|
22 |
-
tensor.stride(),
|
23 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/tqdm.py
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
|
4 |
-
from multiprocessing.synchronize import RLock as MultiprocessingRLock
|
5 |
-
|
6 |
-
|
7 |
-
try:
|
8 |
-
from tqdm import tqdm as _tqdm
|
9 |
-
except ImportError: # pragma: no cover
|
10 |
-
_tqdm = None
|
11 |
-
|
12 |
-
|
13 |
-
def remove_tqdm_multiprocessing_lock():
|
14 |
-
if _tqdm is None: # pragma: no cover
|
15 |
-
return
|
16 |
-
tqdm_lock = _tqdm.get_lock()
|
17 |
-
assert tqdm_lock.__class__.__name__ == 'TqdmDefaultWriteLock'
|
18 |
-
tqdm_lock.locks = [
|
19 |
-
lock for lock in tqdm_lock.locks
|
20 |
-
if not isinstance(lock, MultiprocessingRLock)
|
21 |
-
]
|
22 |
-
|
23 |
-
|
24 |
-
tqdm = _tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/types.py
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
|
6 |
-
from dataclasses import dataclass
|
7 |
-
from datetime import timedelta
|
8 |
-
from typing import Any
|
9 |
-
from typing import Dict
|
10 |
-
from typing import Tuple
|
11 |
-
from typing import TypedDict
|
12 |
-
from typing_extensions import Callable
|
13 |
-
from typing_extensions import Generic
|
14 |
-
from typing_extensions import ParamSpec
|
15 |
-
from typing_extensions import TypeAlias
|
16 |
-
from typing_extensions import TypeVar
|
17 |
-
|
18 |
-
|
19 |
-
Params = Tuple[Tuple[object, ...], Dict[str, Any]]
|
20 |
-
Res = TypeVar('Res')
|
21 |
-
Param = ParamSpec('Param')
|
22 |
-
|
23 |
-
class EmptyKwargs(TypedDict):
|
24 |
-
pass
|
25 |
-
|
26 |
-
@dataclass
|
27 |
-
class OkResult(Generic[Res]):
|
28 |
-
value: Res
|
29 |
-
@dataclass
|
30 |
-
class ExceptionResult:
|
31 |
-
value: Exception
|
32 |
-
@dataclass
|
33 |
-
class AbortedResult:
|
34 |
-
pass
|
35 |
-
@dataclass
|
36 |
-
class EndResult:
|
37 |
-
pass
|
38 |
-
@dataclass
|
39 |
-
class GradioQueueEvent:
|
40 |
-
method_name: str
|
41 |
-
args: tuple[Any, ...]
|
42 |
-
kwargs: dict[str, Any]
|
43 |
-
|
44 |
-
RegularResQueueResult: TypeAlias = "OkResult[Res] | ExceptionResult | GradioQueueEvent"
|
45 |
-
GeneratorResQueueResult: TypeAlias = "OkResult[Res] | ExceptionResult | EndResult | GradioQueueEvent"
|
46 |
-
YieldQueueResult: TypeAlias = "OkResult[Res] | ExceptionResult | EndResult | AbortedResult"
|
47 |
-
|
48 |
-
Duration: TypeAlias = "int | timedelta"
|
49 |
-
DynamicDuration: TypeAlias = "Duration | Callable[Param, Duration] | None"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
spaces/zero/wrappers.py
DELETED
@@ -1,418 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
-
import multiprocessing
|
6 |
-
import os
|
7 |
-
import signal
|
8 |
-
import traceback
|
9 |
-
import warnings
|
10 |
-
from concurrent.futures import ThreadPoolExecutor
|
11 |
-
from contextlib import nullcontext
|
12 |
-
from contextvars import copy_context
|
13 |
-
from datetime import timedelta
|
14 |
-
from functools import partial
|
15 |
-
from functools import wraps
|
16 |
-
from multiprocessing.context import ForkProcess
|
17 |
-
from pickle import PicklingError
|
18 |
-
from queue import Empty
|
19 |
-
from queue import Queue as ThreadQueue
|
20 |
-
from threading import Thread
|
21 |
-
from typing import TYPE_CHECKING
|
22 |
-
from typing import Callable
|
23 |
-
from typing import Generator
|
24 |
-
from typing import Generic
|
25 |
-
from typing_extensions import assert_never
|
26 |
-
|
27 |
-
import psutil
|
28 |
-
|
29 |
-
from ..config import Config
|
30 |
-
from ..utils import debug
|
31 |
-
from ..utils import drop_params
|
32 |
-
from ..utils import gradio_request_var
|
33 |
-
from ..utils import SimpleQueue as Queue
|
34 |
-
from . import client
|
35 |
-
from . import torch
|
36 |
-
from .api import AllowToken
|
37 |
-
from .api import NvidiaIndex
|
38 |
-
from .api import NvidiaUUID
|
39 |
-
from .gradio import GradioPartialContext
|
40 |
-
from .gradio import get_server_port
|
41 |
-
from .gradio import patch_gradio_queue
|
42 |
-
from .gradio import try_process_queue_event
|
43 |
-
from .tqdm import remove_tqdm_multiprocessing_lock
|
44 |
-
from .tqdm import tqdm
|
45 |
-
from .types import * # TODO: Please don't do that
|
46 |
-
|
47 |
-
|
48 |
-
GENERATOR_GLOBAL_TIMEOUT = 20 * 60
|
49 |
-
|
50 |
-
SPAWN_PROGRESS_CLEANUP = 0.1
|
51 |
-
SPAWN_PROGRESS_INIT = 0.1
|
52 |
-
|
53 |
-
|
54 |
-
Process = multiprocessing.get_context('fork').Process
|
55 |
-
forked = False
|
56 |
-
|
57 |
-
|
58 |
-
class Worker(Generic[Res]):
|
59 |
-
process: ForkProcess
|
60 |
-
arg_queue: Queue[tuple[Params, GradioPartialContext]]
|
61 |
-
res_queue: Queue[Res | None]
|
62 |
-
_sentinel: Thread
|
63 |
-
|
64 |
-
def __init__(
|
65 |
-
self,
|
66 |
-
target: Callable[[
|
67 |
-
Queue[tuple[Params, GradioPartialContext]],
|
68 |
-
Queue[Res | None],
|
69 |
-
AllowToken,
|
70 |
-
NvidiaUUID,
|
71 |
-
list[int],
|
72 |
-
], None],
|
73 |
-
allow_token: str,
|
74 |
-
nvidia_uuid: str,
|
75 |
-
):
|
76 |
-
self._sentinel = Thread(target=self._close_on_exit, daemon=True)
|
77 |
-
self.arg_queue = Queue()
|
78 |
-
self.res_queue = Queue()
|
79 |
-
debug(f"{self.arg_queue._writer.fileno()=}") # pyright: ignore [reportAttributeAccessIssue]
|
80 |
-
debug(f"{self.res_queue._writer.fileno()=}") # pyright: ignore [reportAttributeAccessIssue]
|
81 |
-
if (server_port := get_server_port()) is not None:
|
82 |
-
fds = [c.fd for c in psutil.Process().connections() if c.laddr.port == server_port]
|
83 |
-
debug(f"{fds=}")
|
84 |
-
else:
|
85 |
-
warnings.warn("Using a ZeroGPU function outside of Gradio caching or request might block the app")
|
86 |
-
fds = []
|
87 |
-
args = self.arg_queue, self.res_queue, allow_token, nvidia_uuid, fds
|
88 |
-
if TYPE_CHECKING:
|
89 |
-
target(*args)
|
90 |
-
self.process = Process(
|
91 |
-
target=target,
|
92 |
-
args=args,
|
93 |
-
daemon=True,
|
94 |
-
)
|
95 |
-
self.process.start()
|
96 |
-
self._sentinel.start()
|
97 |
-
|
98 |
-
def _close_on_exit(self):
|
99 |
-
self.process.join()
|
100 |
-
self.arg_queue.close()
|
101 |
-
self.res_queue.wlock_release()
|
102 |
-
self.res_queue.put(None)
|
103 |
-
|
104 |
-
|
105 |
-
def worker_init(
|
106 |
-
res_queue: Queue[RegularResQueueResult | None] | Queue[GeneratorResQueueResult | None],
|
107 |
-
allow_token: str,
|
108 |
-
nvidia_uuid: str,
|
109 |
-
fds: list[int],
|
110 |
-
) -> None | ExceptionResult:
|
111 |
-
# Immediately close file descriptors
|
112 |
-
for fd in fds:
|
113 |
-
try:
|
114 |
-
os.close(fd)
|
115 |
-
except Exception as e: # pragma: no cover
|
116 |
-
if isinstance(e, OSError) and e.errno == 9:
|
117 |
-
continue
|
118 |
-
traceback.print_exc()
|
119 |
-
return ExceptionResult(e)
|
120 |
-
progress = nullcontext()
|
121 |
-
if tqdm is not None and Config.zero_gpu_v2:
|
122 |
-
progress = tqdm(total=100, desc="ZeroGPU init", file=open(os.devnull, 'w'))
|
123 |
-
try: # Unrecoverable init part
|
124 |
-
patch_gradio_queue(res_queue)
|
125 |
-
with progress as progress:
|
126 |
-
current_progress = 0 # Gradio does not support float progress updates
|
127 |
-
def update(n: float):
|
128 |
-
nonlocal current_progress
|
129 |
-
current_progress += n
|
130 |
-
if progress is not None:
|
131 |
-
progress.update(round(current_progress * 100) - progress.n)
|
132 |
-
client.allow(allow_token)
|
133 |
-
update(SPAWN_PROGRESS_CLEANUP)
|
134 |
-
torch.unpatch()
|
135 |
-
torch.init(nvidia_uuid)
|
136 |
-
update(SPAWN_PROGRESS_INIT)
|
137 |
-
callback = None
|
138 |
-
if (transfer_size := torch.size()) > 0:
|
139 |
-
remaining = 1 - (SPAWN_PROGRESS_CLEANUP + SPAWN_PROGRESS_INIT)
|
140 |
-
callback = lambda n: update(n * remaining / transfer_size)
|
141 |
-
torch.move(callback=callback)
|
142 |
-
except Exception as e: # pragma: no cover
|
143 |
-
traceback.print_exc()
|
144 |
-
return ExceptionResult(e)
|
145 |
-
try:
|
146 |
-
remove_tqdm_multiprocessing_lock()
|
147 |
-
except Exception: # pragma: no cover
|
148 |
-
print("Error while trying to remove tqdm mp_lock:")
|
149 |
-
traceback.print_exc()
|
150 |
-
|
151 |
-
|
152 |
-
def process_duration(duration: Duration | None):
|
153 |
-
if duration is None or isinstance(duration, timedelta):
|
154 |
-
return duration
|
155 |
-
return timedelta(seconds=duration)
|
156 |
-
|
157 |
-
|
158 |
-
def static_duration(duration: DynamicDuration[Param], *args: Param.args, **kwargs: Param.kwargs):
|
159 |
-
if not callable(duration):
|
160 |
-
return duration
|
161 |
-
return duration(*args, **kwargs)
|
162 |
-
|
163 |
-
|
164 |
-
def regular_function_wrapper(
|
165 |
-
task: Callable[Param, Res],
|
166 |
-
duration: DynamicDuration[Param],
|
167 |
-
) -> Callable[Param, Res]:
|
168 |
-
|
169 |
-
import gradio as gr
|
170 |
-
|
171 |
-
request_var = gradio_request_var()
|
172 |
-
workers: dict[NvidiaIndex, Worker[RegularResQueueResult[Res]]] = {}
|
173 |
-
task_id = id(task)
|
174 |
-
|
175 |
-
@wraps(task)
|
176 |
-
def gradio_handler(*args: Param.args, **kwargs: Param.kwargs) -> Res:
|
177 |
-
|
178 |
-
if forked:
|
179 |
-
return task(*args, **kwargs)
|
180 |
-
|
181 |
-
request = request_var.get()
|
182 |
-
duration_ = static_duration(duration, *args, **kwargs)
|
183 |
-
duration_ = process_duration(duration_)
|
184 |
-
schedule_response = client.schedule(task_id=task_id, request=request, duration=duration_)
|
185 |
-
allow_token = schedule_response.allowToken
|
186 |
-
nvidia_index = schedule_response.nvidiaIndex
|
187 |
-
nvidia_uuid = schedule_response.nvidiaUUID
|
188 |
-
release = partial(client.release, allow_token)
|
189 |
-
|
190 |
-
try:
|
191 |
-
worker = workers.pop(nvidia_index)
|
192 |
-
except KeyError:
|
193 |
-
worker = None
|
194 |
-
|
195 |
-
if worker is not None and worker.process.is_alive() and schedule_response.idle:
|
196 |
-
assert worker.arg_queue.empty()
|
197 |
-
assert worker.res_queue.empty()
|
198 |
-
else:
|
199 |
-
worker = Worker(thread_wrapper, allow_token, nvidia_uuid)
|
200 |
-
|
201 |
-
try:
|
202 |
-
worker.arg_queue.put(((args, kwargs), GradioPartialContext.get()))
|
203 |
-
except PicklingError: # TODO: detailed serialization diagnostic
|
204 |
-
release(fail=True)
|
205 |
-
raise
|
206 |
-
|
207 |
-
while True:
|
208 |
-
res = worker.res_queue.get()
|
209 |
-
if res is None:
|
210 |
-
release(fail=True, allow_404=True)
|
211 |
-
raise gr.Error("GPU task aborted")
|
212 |
-
if isinstance(res, ExceptionResult):
|
213 |
-
release(fail=True)
|
214 |
-
raise res.value
|
215 |
-
if isinstance(res, OkResult):
|
216 |
-
release()
|
217 |
-
workers[nvidia_index] = worker
|
218 |
-
return res.value
|
219 |
-
if isinstance(res, GradioQueueEvent):
|
220 |
-
try_process_queue_event(res.method_name, *res.args, **res.kwargs)
|
221 |
-
continue
|
222 |
-
assert_never(res)
|
223 |
-
|
224 |
-
|
225 |
-
def thread_wrapper(
|
226 |
-
arg_queue: Queue[tuple[Params, GradioPartialContext]],
|
227 |
-
res_queue: Queue[RegularResQueueResult[Res] | None],
|
228 |
-
allow_token: str,
|
229 |
-
nvidia_uuid: str,
|
230 |
-
fds: list[int],
|
231 |
-
):
|
232 |
-
global forked
|
233 |
-
forked = True
|
234 |
-
signal.signal(signal.SIGTERM, drop_params(arg_queue.close))
|
235 |
-
initialized = False
|
236 |
-
while True:
|
237 |
-
try:
|
238 |
-
(args, kwargs), gradio_context = arg_queue.get()
|
239 |
-
except OSError:
|
240 |
-
break
|
241 |
-
if not initialized:
|
242 |
-
if (res := worker_init(
|
243 |
-
res_queue=res_queue,
|
244 |
-
allow_token=allow_token,
|
245 |
-
nvidia_uuid=nvidia_uuid,
|
246 |
-
fds=fds,
|
247 |
-
)) is not None:
|
248 |
-
res_queue.put(res)
|
249 |
-
return
|
250 |
-
initialized = True
|
251 |
-
GradioPartialContext.apply(gradio_context)
|
252 |
-
context = copy_context()
|
253 |
-
with ThreadPoolExecutor() as executor:
|
254 |
-
future = executor.submit(context.run, task, *args, **kwargs) # type: ignore
|
255 |
-
try:
|
256 |
-
res = future.result()
|
257 |
-
except Exception as e:
|
258 |
-
traceback.print_exc()
|
259 |
-
res = ExceptionResult(e)
|
260 |
-
else:
|
261 |
-
res = OkResult(res)
|
262 |
-
try:
|
263 |
-
res_queue.put(res)
|
264 |
-
except PicklingError as e:
|
265 |
-
res_queue.put(ExceptionResult(e))
|
266 |
-
|
267 |
-
# https://github.com/python/cpython/issues/91002
|
268 |
-
if not hasattr(task, '__annotations__'):
|
269 |
-
gradio_handler.__annotations__ = {}
|
270 |
-
|
271 |
-
return gradio_handler
|
272 |
-
|
273 |
-
|
274 |
-
def generator_function_wrapper(
|
275 |
-
task: Callable[Param, Generator[Res, None, None]],
|
276 |
-
duration: DynamicDuration[Param],
|
277 |
-
) -> Callable[Param, Generator[Res, None, None]]:
|
278 |
-
|
279 |
-
import gradio as gr
|
280 |
-
|
281 |
-
request_var = gradio_request_var()
|
282 |
-
workers: dict[NvidiaIndex, Worker[GeneratorResQueueResult[Res]]] = {}
|
283 |
-
task_id = id(task)
|
284 |
-
|
285 |
-
@wraps(task)
|
286 |
-
def gradio_handler(*args: Param.args, **kwargs: Param.kwargs) -> Generator[Res, None, None]:
|
287 |
-
|
288 |
-
if forked:
|
289 |
-
yield from task(*args, **kwargs)
|
290 |
-
return
|
291 |
-
|
292 |
-
request = request_var.get()
|
293 |
-
duration_ = static_duration(duration, *args, **kwargs)
|
294 |
-
duration_ = process_duration(duration_)
|
295 |
-
schedule_response = client.schedule(task_id=task_id, request=request, duration=duration_)
|
296 |
-
allow_token = schedule_response.allowToken
|
297 |
-
nvidia_index = schedule_response.nvidiaIndex
|
298 |
-
nvidia_uuid = schedule_response.nvidiaUUID
|
299 |
-
release = partial(client.release, allow_token)
|
300 |
-
|
301 |
-
try:
|
302 |
-
worker = workers.pop(nvidia_index)
|
303 |
-
except KeyError:
|
304 |
-
worker = None
|
305 |
-
|
306 |
-
if worker is not None and worker.process.is_alive() and schedule_response.idle:
|
307 |
-
assert worker.arg_queue.empty()
|
308 |
-
assert worker.res_queue.empty()
|
309 |
-
else:
|
310 |
-
worker = Worker(thread_wrapper, allow_token, nvidia_uuid)
|
311 |
-
|
312 |
-
try:
|
313 |
-
worker.arg_queue.put(((args, kwargs), GradioPartialContext.get()))
|
314 |
-
except PicklingError: # TODO: detailed serialization diagnostic
|
315 |
-
release(fail=True)
|
316 |
-
raise
|
317 |
-
|
318 |
-
yield_queue: ThreadQueue[YieldQueueResult[Res]] = ThreadQueue()
|
319 |
-
def fill_yield_queue(worker: Worker[GeneratorResQueueResult[Res]]):
|
320 |
-
while True:
|
321 |
-
res = worker.res_queue.get()
|
322 |
-
if res is None:
|
323 |
-
release(fail=True, allow_404=True)
|
324 |
-
yield_queue.put(AbortedResult())
|
325 |
-
return
|
326 |
-
if isinstance(res, ExceptionResult):
|
327 |
-
release(fail=True)
|
328 |
-
yield_queue.put(ExceptionResult(res.value))
|
329 |
-
return
|
330 |
-
if isinstance(res, EndResult):
|
331 |
-
release()
|
332 |
-
workers[nvidia_index] = worker
|
333 |
-
yield_queue.put(EndResult())
|
334 |
-
return
|
335 |
-
if isinstance(res, OkResult):
|
336 |
-
yield_queue.put(OkResult(res.value))
|
337 |
-
continue
|
338 |
-
if isinstance(res, GradioQueueEvent): # pragma: no cover (not working properly on Gradio side)
|
339 |
-
try_process_queue_event(res.method_name, *res.args, **res.kwargs)
|
340 |
-
continue
|
341 |
-
debug(f"fill_yield_queue: assert_never({res=})")
|
342 |
-
assert_never(res)
|
343 |
-
from typing_extensions import assert_never
|
344 |
-
with ThreadPoolExecutor() as e:
|
345 |
-
f = e.submit(copy_context().run, fill_yield_queue, worker)
|
346 |
-
f.add_done_callback(lambda _: debug("fill_yield_queue DONE"))
|
347 |
-
while True:
|
348 |
-
try:
|
349 |
-
res = yield_queue.get(timeout=GENERATOR_GLOBAL_TIMEOUT)
|
350 |
-
except Empty: # pragma: no cover
|
351 |
-
debug(f"yield_queue TIMEOUT ({GENERATOR_GLOBAL_TIMEOUT=})")
|
352 |
-
raise
|
353 |
-
if isinstance(res, AbortedResult):
|
354 |
-
raise gr.Error("GPU task aborted")
|
355 |
-
if isinstance(res, ExceptionResult):
|
356 |
-
raise res.value
|
357 |
-
if isinstance(res, EndResult):
|
358 |
-
break
|
359 |
-
if isinstance(res, OkResult):
|
360 |
-
yield res.value
|
361 |
-
continue
|
362 |
-
debug(f"gradio_handler: assert_never({res=})")
|
363 |
-
assert_never(res)
|
364 |
-
|
365 |
-
|
366 |
-
def thread_wrapper(
|
367 |
-
arg_queue: Queue[tuple[Params, GradioPartialContext]],
|
368 |
-
res_queue: Queue[GeneratorResQueueResult[Res] | None],
|
369 |
-
allow_token: str,
|
370 |
-
nvidia_uuid: str,
|
371 |
-
fds: list[int],
|
372 |
-
):
|
373 |
-
global forked
|
374 |
-
forked = True
|
375 |
-
signal.signal(signal.SIGTERM, drop_params(arg_queue.close))
|
376 |
-
initialized = False
|
377 |
-
while True:
|
378 |
-
try:
|
379 |
-
(args, kwargs), gradio_context = arg_queue.get()
|
380 |
-
except OSError:
|
381 |
-
break
|
382 |
-
if not initialized:
|
383 |
-
if (res := worker_init(
|
384 |
-
res_queue=res_queue,
|
385 |
-
allow_token=allow_token,
|
386 |
-
nvidia_uuid=nvidia_uuid,
|
387 |
-
fds=fds,
|
388 |
-
)) is not None:
|
389 |
-
res_queue.put(res)
|
390 |
-
return
|
391 |
-
initialized = True
|
392 |
-
def iterate():
|
393 |
-
gen = task(*args, **kwargs) # type: ignore
|
394 |
-
while True:
|
395 |
-
try:
|
396 |
-
res = next(gen)
|
397 |
-
except StopIteration:
|
398 |
-
break
|
399 |
-
except Exception as e:
|
400 |
-
res_queue.put(ExceptionResult(e))
|
401 |
-
break
|
402 |
-
try:
|
403 |
-
res_queue.put(OkResult(res))
|
404 |
-
except PicklingError as e:
|
405 |
-
res_queue.put(ExceptionResult(e))
|
406 |
-
break
|
407 |
-
else:
|
408 |
-
continue
|
409 |
-
GradioPartialContext.apply(gradio_context)
|
410 |
-
with ThreadPoolExecutor() as executor:
|
411 |
-
executor.submit(copy_context().run, iterate)
|
412 |
-
res_queue.put(EndResult())
|
413 |
-
|
414 |
-
# https://github.com/python/cpython/issues/91002
|
415 |
-
if not hasattr(task, '__annotations__'):
|
416 |
-
gradio_handler.__annotations__ = {}
|
417 |
-
|
418 |
-
return gradio_handler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
voice_chat.py
DELETED
@@ -1,64 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import edge_tts
|
3 |
-
import asyncio
|
4 |
-
import tempfile
|
5 |
-
import numpy as np
|
6 |
-
import soxr
|
7 |
-
from pydub import AudioSegment
|
8 |
-
import torch
|
9 |
-
import sentencepiece as spm
|
10 |
-
import onnxruntime as ort
|
11 |
-
from huggingface_hub import hf_hub_download, InferenceClient
|
12 |
-
|
13 |
-
# Speech Recognition Model Configuration
|
14 |
-
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
|
15 |
-
sample_rate = 16000
|
16 |
-
|
17 |
-
# Download preprocessor, encoder and tokenizer
|
18 |
-
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
|
19 |
-
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
|
20 |
-
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
|
21 |
-
|
22 |
-
# Mistral Model Configuration
|
23 |
-
client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
|
24 |
-
system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
|
25 |
-
|
26 |
-
def resample(audio_fp32, sr):
|
27 |
-
return soxr.resample(audio_fp32, sr, sample_rate)
|
28 |
-
|
29 |
-
def to_float32(audio_buffer):
|
30 |
-
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
|
31 |
-
|
32 |
-
def transcribe(audio_path):
|
33 |
-
audio_file = AudioSegment.from_file(audio_path)
|
34 |
-
sr = audio_file.frame_rate
|
35 |
-
audio_buffer = np.array(audio_file.get_array_of_samples())
|
36 |
-
|
37 |
-
audio_fp32 = to_float32(audio_buffer)
|
38 |
-
audio_16k = resample(audio_fp32, sr)
|
39 |
-
|
40 |
-
input_signal = torch.tensor(audio_16k).unsqueeze(0)
|
41 |
-
length = torch.tensor(len(audio_16k)).unsqueeze(0)
|
42 |
-
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
|
43 |
-
|
44 |
-
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
|
45 |
-
|
46 |
-
blank_id = tokenizer.vocab_size()
|
47 |
-
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
|
48 |
-
text = tokenizer.decode_ids(decoded_prediction)
|
49 |
-
|
50 |
-
return text
|
51 |
-
|
52 |
-
def model(text):
|
53 |
-
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
|
54 |
-
stream = client1.text_generation(formatted_prompt, max_new_tokens=300)
|
55 |
-
return stream[:-4]
|
56 |
-
|
57 |
-
async def respond(audio):
|
58 |
-
user = transcribe(audio)
|
59 |
-
reply = model(user)
|
60 |
-
communicate = edge_tts.Communicate(reply)
|
61 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
62 |
-
tmp_path = tmp_file.name
|
63 |
-
await communicate.save(tmp_path)
|
64 |
-
return tmp_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|