File size: 32,529 Bytes
07d03e7
 
fb74874
07d03e7
5b0f841
07d03e7
 
 
 
 
5b0f841
 
 
07d03e7
 
 
 
 
 
 
ebd7bc4
07d03e7
 
ed9ac19
c9ca579
de0f0d9
07d03e7
 
52811e4
07d03e7
 
efde43c
de0f0d9
 
 
efde43c
5b0f841
de0f0d9
7e36853
 
5b0f841
0afabcf
de0f0d9
5b0f841
de0f0d9
5b0f841
7e36853
5b0f841
7e36853
 
 
 
 
 
 
5b0f841
 
7e36853
de0f0d9
04d255b
 
07d03e7
5b0f841
a185be6
 
 
 
5b0f841
 
 
 
 
 
 
 
 
 
 
 
07d03e7
5b0f841
ed9ac19
5b0f841
 
52811e4
5b0f841
ed9ac19
 
 
 
 
383cfb9
5b0f841
a185be6
 
5b0f841
a185be6
ed9ac19
 
 
 
a185be6
 
 
 
ed9ac19
 
5b0f841
ed9ac19
a185be6
5b0f841
a185be6
 
 
383cfb9
5b0f841
47f07ad
07d03e7
5b0f841
a185be6
 
5b0f841
a185be6
383cfb9
07d03e7
a185be6
383cfb9
ae87863
ed9ac19
5b0f841
 
383cfb9
 
 
 
07d03e7
383cfb9
5b0f841
ed9ac19
07d03e7
ed9ac19
07d03e7
5b0f841
07d03e7
 
 
 
383cfb9
5b0f841
07d03e7
5b0f841
07d03e7
 
 
a185be6
07d03e7
 
 
5b0f841
07d03e7
 
 
52811e4
5b0f841
07d03e7
 
 
 
 
 
5b0f841
 
07d03e7
 
 
 
 
 
 
48006fa
07d03e7
 
 
 
5b0f841
ae87863
 
 
 
6c60f5f
ae87863
 
 
 
6c60f5f
ae87863
 
 
 
6c60f5f
ae87863
 
 
 
 
6c60f5f
5b0f841
 
ae87863
 
 
 
6c60f5f
ae87863
 
 
 
6c60f5f
ae87863
 
 
 
 
 
 
 
 
 
6c60f5f
ae87863
 
 
 
 
6c60f5f
ae87863
 
5b0f841
ae87863
 
 
 
 
 
 
 
5b0f841
07d03e7
 
5b0f841
07d03e7
5b0f841
07d03e7
 
 
5b0f841
07d03e7
 
 
 
ebd7bc4
07d03e7
 
5b0f841
07d03e7
ebd7bc4
07d03e7
 
 
 
 
 
5b0f841
07d03e7
6f71c22
07d03e7
6c60f5f
07d03e7
 
 
 
 
 
 
 
 
 
 
6f71c22
07d03e7
 
 
 
 
 
 
 
 
 
ebd7bc4
07d03e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b0f841
07d03e7
 
 
 
5b0f841
07d03e7
 
ebd7bc4
07d03e7
 
5b0f841
07d03e7
 
 
 
 
 
 
 
5b0f841
 
 
 
 
 
 
 
 
 
07d03e7
5b0f841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f71c22
 
 
 
 
 
 
 
5b0f841
 
 
 
0afabcf
07d03e7
5b0f841
 
 
 
 
 
 
 
 
07d03e7
5b0f841
 
07d03e7
5b0f841
 
 
 
 
 
 
cdaa80d
5b0f841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07d03e7
 
 
 
 
 
 
 
 
 
5b0f841
 
07d03e7
5b0f841
07d03e7
06597e0
 
ae87863
06597e0
07d03e7
 
 
 
 
 
ae87863
07d03e7
 
 
 
 
 
 
 
 
 
06597e0
07d03e7
 
6c60f5f
07d03e7
 
 
f50b511
48006fa
f50b511
ae87863
07d03e7
 
 
 
 
 
 
48006fa
07d03e7
ae87863
07d03e7
 
6c60f5f
07d03e7
 
5b0f841
07d03e7
ae87863
07d03e7
5b0f841
 
03f90e5
07d03e7
5b0f841
07d03e7
5b0f841
07d03e7
5b0f841
07d03e7
5b0f841
 
cb3cac3
07d03e7
 
 
 
 
 
 
 
 
 
 
 
 
 
5b0f841
 
 
 
 
 
 
07d03e7
 
 
 
 
 
 
 
 
 
 
 
 
ae87863
07d03e7
 
 
 
 
 
 
 
 
5b0f841
 
07d03e7
 
5b0f841
 
 
 
 
1bd41f9
5b0f841
 
 
 
 
 
1bd41f9
 
 
5b0f841
 
 
07d03e7
5b0f841
 
 
2965d28
5b0f841
1c0af73
efde43c
de0f0d9
04d255b
de0f0d9
f62245a
06597e0
cb3cac3
cd995bb
14e435a
 
cc897a2
cb3cac3
80df0bc
 
 
06597e0
1c0af73
80df0bc
1c0af73
 
 
 
 
cd995bb
1c0af73
 
 
 
06597e0
de0f0d9
f50b511
1c0af73
07d03e7
cada336
48006fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
import os
import subprocess
import random

# Install flash attention, skipping CUDA build if necessary
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)
import requests
from bs4 import BeautifulSoup
# Import necessary libraries
import copy
import spaces
import time
import torch
from threading import Thread
from typing import List, Dict, Union
import urllib
import PIL.Image
import io
import datasets
from streaming_stt_nemo import Model as nemo
import gradio as gr
from transformers import TextIteratorStreamer
from transformers import Idefics2ForConditionalGeneration
import tempfile
from huggingface_hub import InferenceClient
import edge_tts
import asyncio
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoModel
from transformers import AutoProcessor

# Load pre-trained models for image captioning and language modeling
model3 = AutoModel.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True)

# Define a function for image captioning
@spaces.GPU(queue=False)
def videochat(image3, prompt3):
    # Process input image and prompt
    inputs = processor(text=[prompt3], images=[image3], return_tensors="pt")
    # Generate captions
    with torch.inference_mode():
        output = model3.generate(
            **inputs,
            do_sample=False,
            use_cache=True,
            max_new_tokens=256,
            eos_token_id=151645,
            pad_token_id=processor.tokenizer.pad_token_id
        )
        prompt_len = inputs["input_ids"].shape[1]
    # Decode and return the generated captions
    decoded_text = processor.batch_decode(output[:, prompt_len:])[0]
    if decoded_text.endswith("<|im_end|>"):
        decoded_text = decoded_text[:-10]
    yield decoded_text

# Define Gradio theme
theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="orange",
    neutral_hue="gray",
    font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif']
).set(
    body_background_fill_dark="#111111",
    block_background_fill_dark="#111111",
    block_border_width="1px",
    block_title_background_fill_dark="#1e1c26",
    input_background_fill_dark="#292733",
    button_secondary_background_fill_dark="#24212b",
    border_color_primary_dark="#343140",
    background_fill_secondary_dark="#111111",
    color_accent_soft_dark="transparent"
)

# Set default language for speech recognition
default_lang = "en"
# Initialize speech recognition engine
engines = {default_lang: nemo(default_lang)}

# Define a function for speech-to-text transcription
def transcribe(audio):
    lang = "en"
    model = engines[lang]
    text = model.stt_file(audio)[0]
    return text

# Get Hugging Face API token
HF_TOKEN = os.environ.get("HF_TOKEN", None)

# Define a function to get the appropriate InferenceClient based on model name
def client_fn(model):
    if "Nous" in model:
        return InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
    elif "Star" in model:
        return InferenceClient("HuggingFaceH4/starchat2-15b-v0.1")
    elif "Mistral" in model:
        return InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
    elif "Phi" in model:
        return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
    elif "Zephyr" in model:
        return InferenceClient("HuggingFaceH4/zephyr-7b-beta")
    else:
        return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

# Define a function to generate a random seed
def randomize_seed_fn(seed: int) -> int:
    seed = random.randint(0, 999999)
    return seed

# System instructions for the language model
system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"

# Define a function for language modeling
def models(text, model="Mixtral 8x7B", seed=42):
    seed = int(randomize_seed_fn(seed))
    generator = torch.Generator().manual_seed(seed)
    client = client_fn(model)
    generate_kwargs = dict(
        max_new_tokens=512,
        seed=seed,
    )
    formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
    stream = client.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
    )
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text
    return output

# Define an asynchronous function to handle voice input and generate responses
async def respond(audio, model, seed):
    user = transcribe(audio)
    reply = models(user, model, seed)
    communicate = edge_tts.Communicate(reply)
    # Save the generated speech to a temporary file
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    yield tmp_path

# Set device to CUDA if available, otherwise CPU
DEVICE = torch.device("cuda")
# Load pre-trained models for image-based chat
MODELS = {
    "idefics2-8b-chatty": Idefics2ForConditionalGeneration.from_pretrained(
        "HuggingFaceM4/idefics2-8b-chatty",
        torch_dtype=torch.float16,
        _attn_implementation="flash_attention_2",
    ).to(DEVICE),
}
# Load pre-trained processor for image-based chat
PROCESSOR = AutoProcessor.from_pretrained(
    "HuggingFaceM4/idefics2-8b",
)

# Define system prompt for the image-based chat model
SYSTEM_PROMPT = [
    {
        "role": "system",
        "content": [
            {
                "type": "text",
                "text": """I am OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Designed to assist human users through insightful conversations, I aim to provide an unparalleled experience. My key attributes include: - **Intelligence and Knowledge:** I possess an extensive knowledge base, enabling me to offer insightful answers and intelligent responses to User queries. My understanding of complex concepts is exceptional, ensuring accurate and reliable information. - **Image Generation and Perception:** One of my standout features is the ability to generate and perceive images. Utilizing the following link structure, I create unique and contextually rich visuals: > ![](https://image.pollinations.ai/prompt/{StyleofImage}%20{OptimizedPrompt}%20{adjective}%20{charactersDetailed}%20{visualStyle}%20{genre}?width={width}&height={height}&nologo=poll&nofeed=yes&seed={random})For image generation, I replace {info inside curly braces} with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience. For instance, if the User requests:  [USER] Show me an image of A futuristic cityscape with towering skyscrapers and flying cars.  [OpenGPT 4o] Generating Image you requested:  ![](https://image.pollinations.ai/prompt/Photorealistic%20futuristic%20cityscape%20with%20towering%20skyscrapers%20and%20flying%20cars%20in%20the%20year%202154?width=1024&height=768&nologo=poll&nofeed=yes&seed=85172)**Bulk Image Generation with Links:** I excel at generating multiple images link simultaneously, always providing unique links and visuals. I ensure that each image is distinct and captivates the User.Note: Make sure to always provide image links starting with ! .As given in examples. My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations. I am constantly evolving, ensuring that I remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question."""
            },
        ],
    },
    {
        "role": "assistant",
        "content": [
            {
                "type": "text",
                "text": "Hello, I'm OpenGPT 4o, made by KingNish. How can I help you? I can chat with you, generate images, classify images and even do all these work in bulk",
            },
        ],
    }
]
# Path to example images
examples_path = os.path.dirname(__file__)
EXAMPLES = [
    [
        {
            "text": "Hi, who are you?",
        }
    ],
    [
        {
            "text": "Create a Photorealistic image of the Eiffel Tower.",
        }
    ],
    [
        {
            "text": "Read what's written on the paper.",
            "files": [f"{examples_path}/example_images/paper_with_text.png"],
        }
    ],
    [
        {
            "text": "Identify two famous people in the modern world.",
            "files": [f"{examples_path}/example_images/elon_smoking.jpg",
                      f"{examples_path}/example_images/steve_jobs.jpg", ]
        }
    ],
    [
        {
            "text": "Create five images of supercars, each in a different color.",
        }
    ],
    [
        {
            "text": "What is 900 multiplied by 900?",
        }
    ],
    [
        {
            "text": "Chase wants to buy 4 kilograms of oval beads and 5 kilograms of star-shaped beads. How much will he spend?",
            "files": [f"{examples_path}/example_images/mmmu_example.jpeg"],
        }
    ],
    [
        {
            "text": "Create an online ad for this product.",
            "files": [f"{examples_path}/example_images/shampoo.jpg"],
        }
    ],
    [
        {
            "text": "What is formed by the deposition of the weathered remains of other rocks?",
            "files": [f"{examples_path}/example_images/ai2d_example.jpeg"],
        }
    ],
    [
        {
            "text": "What's unusual about this image?",
            "files": [f"{examples_path}/example_images/dragons_playing.png"],
        }
    ],
]

# Set bot avatar image
BOT_AVATAR = "OpenAI_logo.png"

# Chatbot utility functions

# Check if a turn in the chat history only contains media
def turn_is_pure_media(turn):
    return turn[1] is None

# Load image from URL
def load_image_from_url(url):
    with urllib.request.urlopen(url) as response:
        image_data = response.read()
        image_stream = io.BytesIO(image_data)
        image = PIL.Image.open(image_stream)
        return image

# Convert image to bytes
def img_to_bytes(image_path):
    image = PIL.Image.open(image_path).convert(mode='RGB')
    buffer = io.BytesIO()
    image.save(buffer, format="JPEG")
    img_bytes = buffer.getvalue()
    image.close()
    return img_bytes

# Format user prompt with image history and system conditioning
def format_user_prompt_with_im_history_and_system_conditioning(
        user_prompt, chat_history) -> List[Dict[str, Union[List, str]]]:
    """
    Produce the resulting list that needs to go inside the processor. It handles the potential image(s), the history, and the system conditioning.
    """
    resulting_messages = copy.deepcopy(SYSTEM_PROMPT)
    resulting_images = []
    for resulting_message in resulting_messages:
        if resulting_message["role"] == "user":
            for content in resulting_message["content"]:
                if content["type"] == "image":
                    resulting_images.append(load_image_from_url(content["image"]))
    # Format history
    for turn in chat_history:
        if not resulting_messages or (
                resulting_messages and resulting_messages[-1]["role"] != "user"
        ):
            resulting_messages.append(
                {
                    "role": "user",
                    "content": [],
                }
            )
        if turn_is_pure_media(turn):
            media = turn[0][0]
            resulting_messages[-1]["content"].append({"type": "image"})
            resulting_images.append(PIL.Image.open(media))
        else:
            user_utterance, assistant_utterance = turn
            resulting_messages[-1]["content"].append(
                {"type": "text", "text": user_utterance.strip()}
            )
            resulting_messages.append(
                {
                    "role": "assistant",
                    "content": [{"type": "text", "text": user_utterance.strip()}],
                }
            )
    # Format current input
    if not user_prompt["files"]:
        resulting_messages.append(
            {
                "role": "user",
                "content": [{"type": "text", "text": user_prompt["text"]}],
            }
        )
    else:
        # Choosing to put the image first (i.e. before the text), but this is an arbitrary choice.
        resulting_messages.append(
            {
                "role": "user",
                "content": [{"type": "image"}] * len(user_prompt["files"])
                          + [{"type": "text", "text": user_prompt["text"]}],
            }
        )
        resulting_images.extend([PIL.Image.open(path) for path in user_prompt["files"]])
    return resulting_messages, resulting_images

# Extract images from a list of messages
def extract_images_from_msg_list(msg_list):
    all_images = []
    for msg in msg_list:
        for c_ in msg["content"]:
            if isinstance(c_, Image.Image):
                all_images.append(c_)
    return all_images

# List of user agents for web search
_useragent_list = [
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
    'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
    'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
]

# Get a random user agent from the list
def get_useragent():
    """Returns a random user agent from the list."""
    return random.choice(_useragent_list)

# Extract visible text from HTML content using BeautifulSoup
def extract_text_from_webpage(html_content):
    """Extracts visible text from HTML content using BeautifulSoup."""
    soup = BeautifulSoup(html_content, "html.parser")
    # Remove unwanted tags
    for tag in soup(["script", "style", "header", "footer", "nav"]):
        tag.extract()
    # Get the remaining visible text
    visible_text = soup.get_text(strip=True)
    return visible_text

# Perform a Google search and return the results
def search(term, num_results=3, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
    """Performs a Google search and returns the results."""
    # Ensure term is a string before parsing
    if isinstance(term, dict):
        term = term.get('text', '')  # Get text from user_prompt or default to empty string
    escaped_term = urllib.parse.quote_plus(term)
    start = 0
    all_results = []
    # Fetch results in batches
    while start < num_results:
        resp = requests.get(
            url="https://www.google.com/search",
            headers={"User-Agent": get_useragent()},  # Set random user agent
            params={
                "q": term,
                "num": num_results - start,  # Number of results to fetch in this batch
                "hl": lang,
                "start": start,
                "safe": safe,
            },
            timeout=timeout,
            verify=ssl_verify,
        )
        resp.raise_for_status()  # Raise an exception if request fails
        soup = BeautifulSoup(resp.text, "html.parser")
        result_block = soup.find_all("div", attrs={"class": "g"})
        # If no results, continue to the next batch
        if not result_block:
            start += 1
            continue
        # Extract link and text from each result
        for result in result_block:
            link = result.find("a", href=True)
            if link:
                link = link["href"]
                try:
                    # Fetch webpage content
                    webpage = requests.get(link, headers={"User-Agent": get_useragent()})
                    webpage.raise_for_status()
                    # Extract visible text from webpage
                    visible_text = extract_text_from_webpage(webpage.text)
                    all_results.append({"link": link, "text": visible_text})
                except requests.exceptions.RequestException as e:
                    # Handle errors fetching or processing webpage
                    print(f"Error fetching or processing {link}: {e}")
                    all_results.append({"link": link, "text": None})
            else:
                all_results.append({"link": None, "text": None})
        start += len(result_block)  # Update starting index for next batch
    return all_results

# Format the prompt for the language model
def format_prompt(user_prompt, chat_history):
    prompt = "<s>"
    for item in chat_history:
        # Check if the item is a tuple (text response)
        if isinstance(item, tuple):
            prompt += f"[INST] {item[0]} [/INST]"  # User prompt
            prompt += f" {item[1]}</s> "           # Bot response
        # Otherwise, assume it's related to an image - you might need to adjust this logic
        else:
            # Handle image representation in the prompt, e.g., add a placeholder
            prompt += f" [Image] " 
    prompt += f"[INST] {user_prompt} [/INST]"
    return prompt

# Define a function for model inference
@spaces.GPU(duration=30, queue=False)
def model_inference(
        user_prompt,
        chat_history,
        model_selector,
        decoding_strategy,
        temperature,
        max_new_tokens,
        repetition_penalty,
        top_p,
        web_search,
):
    # Define generation_args at the beginning of the function
    generation_args = {}  

    # Web search logic
    if not user_prompt["files"]:
        if web_search is True:
            """Performs a web search, feeds the results to a language model, and returns the answer."""
            web_results = search(user_prompt["text"])
            web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
            # Load the language model
            client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
            generate_kwargs = dict(
                max_new_tokens=4000,
                do_sample=True,
            )
            # Format the prompt for the language model
            formatted_prompt = format_prompt(
                f"""You are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Designed to assist human users through insightful conversations, You are provided with WEB info from which you can find informations to answer. You do not say Unnecesarry things Only say thing which is important and relevant. You also has the ability to generate images. BY Utilizing the following link structure, : ![](https://image.pollinations.ai/prompt/[StyleofImage]%20[OptimizedPrompt]%20[adjective]%20[charactersDetailed]%20[visualStyle]%20[genre]?width=[width]&height=[height]&nologo=poll&nofeed=yes&seed=[random])    For image generation, You replace info inside bracets with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience.     Note: 1. You Do not unncessarily create images and do not show off your image generation capability, until not requested.    2. You always Give image link in format ![](url)    3. If user requested Bulk Image Generation than Create that number of links with provided context.    4. Always learn from previous conversation.    5. Always try to connect conversation with history.    6. Do not make conversation too long.    7. Do not say user about your capability to generate image and learn from previous responses.    My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations. I am constantly evolving, ensuring that I remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question.    [USER] {user_prompt} [WEB] {web2} [OpenGPT 4o]""",
                chat_history)
            # Generate the response from the language model
            stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
                                            return_full_text=False)
            output = ""
            # Construct the output from the stream of tokens
            for response in stream:
                if not response.token.text == "</s>":
                    output += response.token.text
                yield output
        else:
            client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
            generate_kwargs = dict(
                max_new_tokens=5000,
                do_sample=True,
            )
            # Format the prompt for the language model
            formatted_prompt = format_prompt(
                f"""You are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Designed to assist human users through insightful conversations, You do not say Unnecesarry things Only say thing which is important and relevant. You also has the ability to generate images. BY Utilizing the following link structure, : ![](https://image.pollinations.ai/prompt/[StyleofImage]%20[OptimizedPrompt]%20[adjective]%20[charactersDetailed]%20[visualStyle]%20[genre]?width=[width]&height=[height]&nologo=poll&nofeed=yes&seed=[random])    For image generation, You replace info inside bracets with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience.     Note: 1. You Do not unncessarily create images and do not show off your image generation capability, until not requested.    2. You always Give image link in format ![](url)    3. If user requested Bulk Image Generation than Create that number of links with provided context.    4. Always learn from previous conversation.    5. Always try to connect conversation with history.    6. Do not make conversation too long.    7. Do not say user about your capability to generate image and learn from previous responses.    My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations. I am constantly evolving, ensuring that I remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question.    [USER] {user_prompt} [OpenGPT 4o]""",
                chat_history)
            # Generate the response from the language model
            stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
                                            return_full_text=False)
            output = ""
            # Construct the output from the stream of tokens
            for response in stream:
                if not response.token.text == "</s>":
                    output += response.token.text
                yield output
        return
    else:
        if user_prompt["text"].strip() == "" and not user_prompt["files"]:
            gr.Error("Please input a query and optionally an image(s).")
            return  # Stop execution if there's an error

        if user_prompt["text"].strip() == "" and user_prompt["files"]:
            gr.Error("Please input a text query along with the image(s).")
            return  # Stop execution if there's an error

        streamer = TextIteratorStreamer(
            PROCESSOR.tokenizer,
            skip_prompt=True,
            timeout=120.0,
        )
        # Move generation_args initialization here
        generation_args = {
            "max_new_tokens": max_new_tokens,
            "repetition_penalty": repetition_penalty,
            "streamer": streamer,
        }
        assert decoding_strategy in [
            "Greedy",
            "Top P Sampling",
        ]

        if decoding_strategy == "Greedy":
            generation_args["do_sample"] = False
        elif decoding_strategy == "Top P Sampling":
            generation_args["temperature"] = temperature
            generation_args["do_sample"] = True
            generation_args["top_p"] = top_p
        # Creating model inputs
        (
            resulting_text,
            resulting_images,
        ) = format_user_prompt_with_im_history_and_system_conditioning(
            user_prompt=user_prompt,
            chat_history=chat_history,
        )
        prompt = PROCESSOR.apply_chat_template(resulting_text, add_generation_prompt=True)
        inputs = PROCESSOR(
            text=prompt,
            images=resulting_images if resulting_images else None,
            return_tensors="pt",
        )
        inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
        generation_args.update(inputs)
        thread = Thread(
            target=MODELS[model_selector].generate,
            kwargs=generation_args,
        )
        thread.start()
        acc_text = ""
        for text_token in streamer:
            time.sleep(0.01)
            acc_text += text_token
            if acc_text.endswith("<end_of_utterance>"):
                acc_text = acc_text[:-18]
            yield acc_text
        return
# Define features for the dataset
FEATURES = datasets.Features(
    {
        "model_selector": datasets.Value("string"),
        "images": datasets.Sequence(datasets.Image(decode=True)),
        "conversation": datasets.Sequence({"User": datasets.Value("string"), "Assistant": datasets.Value("string")}),
        "decoding_strategy": datasets.Value("string"),
        "temperature": datasets.Value("float32"),
        "max_new_tokens": datasets.Value("int32"),
        "repetition_penalty": datasets.Value("float32"),
        "top_p": datasets.Value("int32"),
    }
)

# Define hyper-parameters for generation
max_new_tokens = gr.Slider(
    minimum=2048,
    maximum=16000,
    value=4096,
    step=64,
    interactive=True,
    label="Maximum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
    minimum=0.01,
    maximum=5.0,
    value=1,
    step=0.01,
    interactive=True,
    label="Repetition penalty",
    info="1.0 is equivalent to no penalty",
)
decoding_strategy = gr.Radio(
    [
        "Greedy",
        "Top P Sampling",
    ],
    value="Top P Sampling",
    label="Decoding strategy",
    interactive=True,
    info="Higher values are equivalent to sampling more low-probability tokens.",
)
temperature = gr.Slider(
    minimum=0.0,
    maximum=2.0,
    value=0.5,
    step=0.05,
    visible=True,
    interactive=True,
    label="Sampling temperature",
    info="Higher values will produce more diverse outputs.",
)
top_p = gr.Slider(
    minimum=0.01,
    maximum=0.99,
    value=0.9,
    step=0.01,
    visible=True,
    interactive=True,
    label="Top P",
    info="Higher values are equivalent to sampling more low-probability tokens.",
)

# Create a chatbot interface
chatbot = gr.Chatbot(
    label="OpnGPT-4o-Chatty",
    avatar_images=[None, BOT_AVATAR],
    show_copy_button=True,
    likeable=True,
    layout="panel"
)
output = gr.Textbox(label="Prompt")

# Create Gradio blocks for different functionalities

# Chat interface block
with gr.Blocks(
        fill_height=True,
        css=""".gradio-container .avatar-container {height: 40px width: 40px !important;} #duplicate-button {margin: auto; color: white; background: #f1a139; border-radius: 100vh; margin-top: 2px; margin-bottom: 2px;}""",
) as chat:
    gr.Markdown("# Image Chat, Image Generation, Image classification and Normal Chat")
    with gr.Row(elem_id="model_selector_row"):
        model_selector = gr.Dropdown(
            choices=MODELS.keys(),
            value=list(MODELS.keys())[0],
            interactive=True,
            show_label=False,
            container=False,
            label="Model",
            visible=False,
        )
    decoding_strategy.change(
        fn=lambda selection: gr.Slider(
            visible=(
                    selection
                    in [
                        "contrastive_sampling",
                        "beam_sampling",
                        "Top P Sampling",
                        "sampling_top_k",
                    ]
            )
        ),
        inputs=decoding_strategy,
        outputs=temperature,
    )
    decoding_strategy.change(
        fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
        inputs=decoding_strategy,
        outputs=top_p,
    )
    gr.ChatInterface(
        fn=model_inference,
        chatbot=chatbot,
        examples=EXAMPLES,
        multimodal=True,
        cache_examples=False,
        additional_inputs=[
            model_selector,
            decoding_strategy,
            temperature,
            max_new_tokens,
            repetition_penalty,
            top_p,
            gr.Checkbox(label="Web Search", value=True),  # Add web_search checkbox
        ],
    )

# Voice chat block
with gr.Blocks() as voice:
    with gr.Row():
        select = gr.Dropdown(['Nous Hermes Mixtral 8x7B DPO', 'Mixtral 8x7B', 'StarChat2 15b', 'Mistral 7B v0.3',
                              'Phi 3 mini', 'Zephyr 7b'], value="Mistral 7B v0.3", label="Select Model")
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=999999,
            step=1,
            value=0,
            visible=False
        )
        input = gr.Audio(label="User", sources="microphone", type="filepath", waveform_options=False)
        output = gr.Audio(label="AI", type="filepath",
                          interactive=False,
                          autoplay=True,
                          elem_classes="audio")
        gr.Interface(
            fn=respond,
            inputs=[input, select, seed],
            outputs=[output], api_name="translate", live=True)

# Live chat block
with gr.Blocks() as livechat:  
    gr.Interface(
        fn=videochat,
        inputs=[gr.Image(type="pil",sources="webcam", label="Upload Image"), gr.Textbox(label="Prompt", value="what he is doing")],
        outputs=gr.Textbox(label="Answer")
    )

with gr.Blocks() as instant:
    gr.HTML("<iframe src='https://kingnish-sdxl-flash.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")

with gr.Blocks() as dalle:
    gr.HTML("<iframe src='https://kingnish-image-gen-pro.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")

with gr.Blocks() as playground:
    gr.HTML("<iframe src='https://fluently-fluently-playground.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")

with gr.Blocks() as image:
    gr.Markdown("""### More models are coming""")
    gr.TabbedInterface([ instant, dalle, playground], ['Instant🖼️','Powerful🖼️', 'Playground🖼'])    




with gr.Blocks() as instant2:
    gr.HTML("<iframe src='https://kingnish-instant-video.hf.space' width='100%' height='3000px' style='border-radius: 8px;'></iframe>")

with gr.Blocks() as video:
    gr.Markdown("""More Models are coming""")
    gr.TabbedInterface([ instant2], ['Instant🎥'])   

with gr.Blocks(theme=theme, title="OpenGPT 4o DEMO") as demo:
    gr.Markdown("# OpenGPT 4o")
    gr.TabbedInterface([chat, voice, livechat, image, video], ['💬 SuperChat','🗣️ Voice Chat','📸 Live Chat', '🖼️ Image Engine', '🎥 Video Engine'])

demo.queue(max_size=300)
demo.launch()