Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,32 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
# Define the classification function
|
4 |
def classify_task(prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
# Here you would implement the logic to classify the prompt
|
6 |
# For example, using if-elif-else statements or a machine learning model
|
7 |
if 'generate text' in prompt.lower():
|
|
|
1 |
+
import re
|
2 |
import gradio as gr
|
3 |
+
from huggingface_hub import InferenceClient
|
4 |
+
|
5 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
6 |
+
|
7 |
+
system_instructions = """<s> [INST] You will be provided with text, and your task is to classify task tasks are (text generation, image generation, pdf chat, image text to text, image classification, summarization, translation , tts) """
|
8 |
+
|
9 |
|
|
|
10 |
def classify_task(prompt):
|
11 |
+
generate_kwargs = dict(
|
12 |
+
temperature=0.5,
|
13 |
+
max_new_tokens=1024,
|
14 |
+
top_p=0.95,
|
15 |
+
repetition_penalty=1.0,
|
16 |
+
do_sample=True,
|
17 |
+
seed=42,
|
18 |
+
)
|
19 |
+
|
20 |
+
formatted_prompt = system_instructions + prompt + "[/INST]"
|
21 |
+
stream = client.text_generation(
|
22 |
+
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
23 |
+
output = ""
|
24 |
+
|
25 |
+
for response in stream:
|
26 |
+
output += response.token.text
|
27 |
+
|
28 |
+
# Define the classification function
|
29 |
+
def classify_task2(prompt):
|
30 |
# Here you would implement the logic to classify the prompt
|
31 |
# For example, using if-elif-else statements or a machine learning model
|
32 |
if 'generate text' in prompt.lower():
|