Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,663 Bytes
0f8ec45 2d30d63 0f8ec45 1fd4564 fb3409b e4cb9b4 fb3409b 0f8ec45 fb3409b d50653b fb3409b a6abdc9 0f8ec45 ed2d2b6 0f8ec45 089c3bd 2d30d63 ed2d2b6 089c3bd ac08ca7 089c3bd 0f8ec45 60c673a fb3409b 52d72c6 1a36e0e 8b65031 fb3409b 52d72c6 1a36e0e ed2d2b6 519d843 3142fb1 bc20327 32b570e 57237e8 ce7a615 a6abdc9 0f8ec45 909646e 928f3b9 0f8ec45 afeabee 5f9e180 dd6d711 a6abdc9 afeabee cd0a2d9 25be712 bbeb5e2 d035873 7921b80 236f936 cd0a2d9 236f936 60c673a afeabee dd6d711 a6abdc9 dd6d711 a1bd179 fb3409b a88ad2b 236f936 60c673a 0f8ec45 6027158 ed2d2b6 2656341 0f8ec45 50098a7 0a795c5 bf4a496 0f8ec45 a26a344 0f8ec45 8f1a540 cf80990 8f1a540 cf80990 c1d1b49 1332b31 8f1a540 cf80990 1332b31 8f1a540 cf80990 1332b31 8f1a540 2d30d63 bf4a496 8f1a540 1332b31 8f1a540 3ef4373 8f1a540 928f3b9 9b50823 0f8ec45 909646e a6abdc9 9061f6a 1a36e0e 0f8ec45 5f9e180 0f8ec45 a6abdc9 e8e4ed0 57237e8 a6abdc9 909646e a6abdc9 3ef4373 909646e a6abdc9 52d72c6 3ef4373 e8e4ed0 8f1a540 cf80990 8f1a540 cd04efe 8f1a540 57237e8 5079df0 0f8ec45 5079df0 6aef7b0 2d30d63 0f8ec45 909646e 1a36e0e 0f8ec45 e91ae6b a26a344 0f8ec45 d72df82 0f8ec45 17b0567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
from __future__ import annotations
import math
import random
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
from diffusers import EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline
from huggingface_hub import hf_hub_download, InferenceClient
from diffusers import DiffusionPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1").to(device)
help_text = """
To optimize image results:
- Adjust the **Image CFG weight** if the image isn't changing enough or is changing too much. Lower it to allow bigger changes, or raise it to preserve original details.
- Modify the **Text CFG weight** to influence how closely the edit follows text instructions. Increase it to adhere more to the text, or decrease it for subtler changes.
- Experiment with different **random seeds** and **CFG values** for varied outcomes.
- **Rephrase your instructions** for potentially better results.
- **Increase the number of steps** for enhanced edits.
"""
def set_timesteps_patched(self, num_inference_steps: int, device = None):
self.num_inference_steps = num_inference_steps
ramp = np.linspace(0, 1, self.num_inference_steps)
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
sigmas = (sigmas).to(dtype=torch.float32, device=device)
self.timesteps = self.precondition_noise(sigmas)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu")
# Image Editor
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
EDMEulerScheduler.set_timesteps = set_timesteps_patched
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file( edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16 )
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_edit.to("cuda")
client1 = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
system_instructions1 = "<|system|>\nAct as Image Prompt Generation expert, Your task is to modify prompt by USER to more better and detailed prompt for Image Generation. \n Ensure the prompt is deatiled, yet descriptive to generate an exceptional image that meets the user's expectations. \n Your task is to reply with final optimized prompt only. Reply with optimized prompt only.\n<|user|>\n"
def promptifier(prompt):
formatted_prompt = f"{system_instructions1}{prompt}\n<|assistant|>\n"
stream = client1.text_generation(formatted_prompt, max_new_tokens=300)
return stream
# Generator
@spaces.GPU(duration=60, queue=False)
def king(type ,
input_image ,
instruction: str ,
negative_prompt: str ="",
enhance_prompt: bool = True,
steps: int = 25,
randomize_seed: bool = True,
seed: int = 2404,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 6,
progress=gr.Progress(track_tqdm=True)
):
if type=="Image Editing" :
input_image = Image.open(input_image).convert('RGB')
if randomize_seed:
seed = random.randint(0, 999999)
generator = torch.manual_seed(seed)
output_image = pipe_edit(
instruction, negative_prompt=negative_prompt, image=input_image,
guidance_scale=guidance_scale, image_guidance_scale=1.5,
width = input_image.width, height = input_image.height,
num_inference_steps=steps, generator=generator, output_type="latent",
).images
refine = refiner(
prompt=f"{instruction}, 4k, hd, high quality, masterpiece",
negative_prompt = negative_prompt,
guidance_scale=7.5,
num_inference_steps=steps,
image=output_image,
generator=generator,
).images[0]
return seed, refine
else :
if randomize_seed:
seed = random.randint(0, 999999)
generator = torch.Generator().manual_seed(seed)
if enhance_prompt:
print(f"BEFORE: {instruction} ")
instruction = promptifier(instruction)
print(f"AFTER: {instruction} ")
image = pipe(
prompt = instruction,
negative_prompt = negative_prompt,
width = width,
height = height,
num_inference_steps = (steps/5),
generator = generator,
guidance_scale=0.0,
output_type="latent"
).images
refine = refiner( prompt=instruction,
negative_prompt = negative_prompt,
guidance_scale = 7.5,
num_inference_steps= steps,
image=image, generator=generator,
).images[0]
return seed, refine
client = InferenceClient()
# Prompt classifier
def response(instruction, input_image=None ):
if input_image is None:
output="Image Generation"
else:
try:
text = instruction
labels = ["Image Editing", "Image Generation"]
classification = client.zero_shot_classification(text, labels, multi_label=True)
output = classification[0]
output = str(output)
if "Editing" in output:
output = "Image Editing"
else:
output = "Image Generation"
except:
if input_image is None:
output="Image Generation"
else:
output="Image Editing"
return output
css = '''
.gradio-container{max-width: 700px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
examples=[
[
"Image Generation",
None,
"A luxurious supercar with a unique design. The car should have a pearl white finish, and gold accents. 4k, realistic.",
],
[
"Image Editing",
"./supercar.png",
"make it red",
],
[
"Image Editing",
"./red_car.png",
"add some snow",
],
[
"Image Generation",
None,
"An alien grasping a sign board contain word 'ALIEN' with Neon Glow, neon, futuristic, neonpunk, neon lights",
],
[
"Image Generation",
None,
"Beautiful Eiffel Tower at Night",
],
[
"Image Generation",
None,
"Beautiful Eiffel Tower at Night",
],
]
with gr.Blocks(css=css) as demo:
gr.Markdown("# Image Generation , Image Editing \n ### Note: First image generation takes time")
with gr.Row():
instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)
generate_button = gr.Button("Run", scale=0)
with gr.Row():
type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True)
enhance_prompt = gr.Checkbox(label="Enhance prompt", value=False, scale=0)
with gr.Row():
input_image = gr.Image(label="Image", type='filepath', interactive=True)
with gr.Row():
guidance_scale = gr.Number(value=6.0, step=0.1, label="Guidance Scale", interactive=True)
steps = gr.Number(value=25, step=1, label="Steps", interactive=True)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, ugly, disgusting, blurry, amputation,(face asymmetry, eyes asymmetry, deformed eyes, open mouth)",
visible=True)
with gr.Row():
width = gr.Slider( label="Width", minimum=256, maximum=2048, step=64, value=1024)
height = gr.Slider( label="Height", minimum=256, maximum=2048, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(label="Randomize Seed", value = True, interactive=True )
seed = gr.Number(value=2404, step=1, label="Seed", interactive=True)
gr.Examples(
examples=examples,
inputs=[type,input_image, instruction],
fn=king,
outputs=[input_image],
cache_examples=False,
)
# gr.Markdown(help_text)
instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
input_image.upload(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
gr.on(triggers=[
generate_button.click,
instruction.submit
],
fn=king,
inputs=[type,
input_image,
instruction,
negative_prompt,
enhance_prompt,
steps,
randomize_seed,
seed,
width,
height,
guidance_scale,
],
outputs=[seed, input_image],
api_name = "image_gen_pro",
queue=False
)
demo.queue(max_size=500).launch() |