Spaces:
Running
on
Zero
Running
on
Zero
test scheduler
Browse files
app.py
CHANGED
@@ -6,17 +6,20 @@ import gradio as gr
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
-
from diffusers import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL,
|
10 |
from huggingface_hub import hf_hub_download, InferenceClient
|
11 |
|
12 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
13 |
|
14 |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
15 |
refiner.to("cuda")
|
16 |
|
17 |
-
pipe_fast = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16, vae=vae)
|
18 |
-
pipe_fast.
|
19 |
-
pipe_fast.set_adapters("lora")
|
20 |
pipe_fast.to("cuda")
|
21 |
|
22 |
help_text = """
|
@@ -183,6 +186,11 @@ examples=[
|
|
183 |
None,
|
184 |
"Beautiful Eiffel Tower at Night",
|
185 |
],
|
|
|
|
|
|
|
|
|
|
|
186 |
]
|
187 |
|
188 |
with gr.Blocks(css=css) as demo:
|
@@ -207,7 +215,7 @@ with gr.Blocks(css=css) as demo:
|
|
207 |
negative_prompt = gr.Text(
|
208 |
label="Negative prompt",
|
209 |
max_lines=1,
|
210 |
-
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs,
|
211 |
visible=True)
|
212 |
with gr.Row():
|
213 |
width = gr.Slider( label="Width", minimum=256, maximum=2048, step=64, value=1024)
|
@@ -220,9 +228,7 @@ with gr.Blocks(css=css) as demo:
|
|
220 |
show_label=False,
|
221 |
interactive=True,
|
222 |
)
|
223 |
-
seed = gr.Number(value=
|
224 |
-
|
225 |
-
|
226 |
|
227 |
gr.Examples(
|
228 |
examples=examples,
|
@@ -259,4 +265,4 @@ with gr.Blocks(css=css) as demo:
|
|
259 |
outputs=[seed, input_image],
|
260 |
)
|
261 |
|
262 |
-
demo.queue(max_size=
|
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
+
from diffusers import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL, DPMSolverMultistepScheduler
|
10 |
from huggingface_hub import hf_hub_download, InferenceClient
|
11 |
|
12 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
13 |
+
pipe = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, vae=vae)
|
14 |
+
pipe.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
|
15 |
+
pipe.set_adapters("lora")
|
16 |
+
pipe.to("cuda")
|
17 |
|
18 |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
19 |
refiner.to("cuda")
|
20 |
|
21 |
+
pipe_fast = StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0_Lightning", torch_dtype=torch.float16, vae=vae, custom_pipeline="lpw_stable_diffusion_xl", use_safetensors=True)
|
22 |
+
pipe_fast.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
|
|
|
23 |
pipe_fast.to("cuda")
|
24 |
|
25 |
help_text = """
|
|
|
186 |
None,
|
187 |
"Beautiful Eiffel Tower at Night",
|
188 |
],
|
189 |
+
[
|
190 |
+
"Image Generation",
|
191 |
+
None,
|
192 |
+
"Beautiful Eiffel Tower at Night",
|
193 |
+
],
|
194 |
]
|
195 |
|
196 |
with gr.Blocks(css=css) as demo:
|
|
|
215 |
negative_prompt = gr.Text(
|
216 |
label="Negative prompt",
|
217 |
max_lines=1,
|
218 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, ugly, disgusting, blurry, amputation,(face asymmetry, eyes asymmetry, deformed eyes, open mouth)",
|
219 |
visible=True)
|
220 |
with gr.Row():
|
221 |
width = gr.Slider( label="Width", minimum=256, maximum=2048, step=64, value=1024)
|
|
|
228 |
show_label=False,
|
229 |
interactive=True,
|
230 |
)
|
231 |
+
seed = gr.Number(value=2404, step=1, label="Seed", interactive=True)
|
|
|
|
|
232 |
|
233 |
gr.Examples(
|
234 |
examples=examples,
|
|
|
265 |
outputs=[seed, input_image],
|
266 |
)
|
267 |
|
268 |
+
demo.queue(max_size=50).launch()
|