File size: 9,554 Bytes
33192bb ea65479 55953fe 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 62d88ea 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 33192bb 7f24723 f27ba88 7f24723 f27ba88 7f24723 33192bb 86ea709 33192bb 7f24723 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import librosa
import tensorflow as tf
from tensorflow.keras.models import model_from_json
import soundfile as sf
import numpy as np
import os
import scipy
from scipy.io import wavfile
import gradio as gr
def audio_to_audio_frame_stack(sound_data, frame_length, hop_length_frame):
"""This function takes an audio and splits it into several frames
returning a numpy matrix of size (nb_frame, frame_length)."""
sequence_sample_length = sound_data.shape[0]
sound_data_list = [
sound_data[start:start + frame_length]
for start in range(0, sequence_sample_length - frame_length + 1, hop_length_frame)
]
sound_data_array = np.vstack(sound_data_list)
return sound_data_array
def audio_files_to_numpy(audio_dir, list_audio_files, sample_rate, frame_length, hop_length_frame, min_duration):
"""This function takes audio files in a directory and merges them
into a numpy matrix of size (nb_frame, frame_length) for a sliding window of size hop_length_frame."""
list_sound_array = []
for file in list_audio_files:
y, sr = librosa.load(os.path.join(audio_dir, file), sr=sample_rate)
total_duration = librosa.get_duration(y=y, sr=sr)
if total_duration >= min_duration:
list_sound_array.append(audio_to_audio_frame_stack(y, frame_length, hop_length_frame))
else:
print(f"The following file {os.path.join(audio_dir,file)} is below the min duration")
return np.vstack(list_sound_array) if len(list_sound_array) > 0 else np.array([])
def blend_noise_randomly(voice, noise, nb_samples, frame_length):
"""This function randomly blends voice frames with noise frames."""
prod_voice = np.zeros((nb_samples, frame_length))
prod_noise = np.zeros((nb_samples, frame_length))
prod_noisy_voice = np.zeros((nb_samples, frame_length))
for i in range(nb_samples):
id_voice = np.random.randint(0, voice.shape[0])
id_noise = np.random.randint(0, noise.shape[0])
level_noise = np.random.uniform(0.2, 0.8)
prod_voice[i, :] = voice[id_voice, :]
prod_noise[i, :] = level_noise * noise[id_noise, :]
prod_noisy_voice[i, :] = prod_voice[i, :] + prod_noise[i, :]
return prod_voice, prod_noise, prod_noisy_voice
def audio_to_magnitude_db_and_phase(n_fft, hop_length_fft, audio):
"""Convert audio into a spectrogram, returning the magnitude in dB and the phase."""
stftaudio = librosa.stft(audio, n_fft=n_fft, hop_length=hop_length_fft)
stftaudio_magnitude, stftaudio_phase = librosa.magphase(stftaudio)
stftaudio_magnitude_db = librosa.amplitude_to_db(stftaudio_magnitude, ref=np.max)
return stftaudio_magnitude_db, stftaudio_phase
def numpy_audio_to_matrix_spectrogram(numpy_audio, dim_square_spec, n_fft, hop_length_fft):
"""Takes a numpy array of shape (nb_frame, frame_length) and returns
the matrix spectrogram for amplitude in dB and phase (each of shape (nb_frame, dim_square_spec, dim_square_spec))."""
nb_audio = numpy_audio.shape[0]
m_mag_db = np.zeros((nb_audio, dim_square_spec, dim_square_spec))
m_phase = np.zeros((nb_audio, dim_square_spec, dim_square_spec), dtype=complex)
for i in range(nb_audio):
m_mag_db[i, :, :], m_phase[i, :, :] = audio_to_magnitude_db_and_phase(
n_fft, hop_length_fft, numpy_audio[i])
return m_mag_db, m_phase
def magnitude_db_and_phase_to_audio(frame_length, hop_length_fft, stftaudio_magnitude_db, stftaudio_phase):
"""Reverts a dB spectrogram to audio."""
stftaudio_magnitude_rev = librosa.db_to_amplitude(stftaudio_magnitude_db, ref=1.0)
audio_reverse_stft = stftaudio_magnitude_rev * stftaudio_phase
audio_reconstruct = librosa.istft(audio_reverse_stft, hop_length=hop_length_fft, length=frame_length)
return audio_reconstruct
def matrix_spectrogram_to_numpy_audio(m_mag_db, m_phase, frame_length, hop_length_fft):
"""Reverts matrix spectrograms to a stacked numpy audio array."""
list_audio = []
nb_spec = m_mag_db.shape[0]
for i in range(nb_spec):
audio_reconstruct = magnitude_db_and_phase_to_audio(
frame_length, hop_length_fft, m_mag_db[i], m_phase[i])
list_audio.append(audio_reconstruct)
return np.vstack(list_audio)
def scaled_in(matrix_spec):
"""Global scaling applied to noisy voice spectrograms (scale between -1 and 1)."""
matrix_spec = (matrix_spec + 46) / 50
return matrix_spec
def scaled_ou(matrix_spec):
"""Global scaling applied to noise model spectrograms (scale between -1 and 1)."""
matrix_spec = (matrix_spec - 6) / 82
return matrix_spec
def inv_scaled_in(matrix_spec):
"""Inverse global scaling applied to noisy voices spectrograms."""
matrix_spec = matrix_spec * 50 - 46
return matrix_spec
def inv_scaled_ou(matrix_spec):
"""Inverse global scaling applied to noise model spectrograms."""
matrix_spec = matrix_spec * 82 + 6
return matrix_spec
def prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft):
"""Use pretrained weights to denoise a noisy voice audio, and save the result."""
# Load model from JSON + weights
json_file = open(os.path.join(weights_path, name_model + '.json'), 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
loaded_model.load_weights(os.path.join(weights_path, name_model + '.h5'))
print("Loaded model from disk")
# Convert audio file(s) to numpy frames
audio = audio_files_to_numpy(
audio_dir_prediction,
audio_input_prediction,
sample_rate,
frame_length,
hop_length_frame,
min_duration
)
if audio.size == 0:
print("No valid audio frames found, skipping prediction.")
return
dim_square_spec = int(n_fft / 2) + 1
# Create amplitude (dB) and phase
m_amp_db_audio, m_pha_audio = numpy_audio_to_matrix_spectrogram(audio, dim_square_spec, n_fft, hop_length_fft)
# Global scaling to get distribution -1 to 1
X_in = scaled_in(m_amp_db_audio)
# Reshape for model prediction
X_in = X_in.reshape(X_in.shape[0], X_in.shape[1], X_in.shape[2], 1)
# Predict using loaded network
X_pred = loaded_model.predict(X_in)
# Rescale back the predicted noise
inv_sca_X_pred = inv_scaled_ou(X_pred)
# Remove noise model from noisy speech
X_denoise = m_amp_db_audio - inv_sca_X_pred[:, :, :, 0]
# Reconstruct audio
audio_denoise_recons = matrix_spectrogram_to_numpy_audio(X_denoise, m_pha_audio, frame_length, hop_length_fft)
# Combine all frames into a single 1D array, scaled up
nb_samples = audio_denoise_recons.shape[0]
denoise_long = audio_denoise_recons.reshape(1, nb_samples * frame_length) * 10
# Save to disk
sf.write(audio_output_prediction, denoise_long[0, :], sample_rate)
print(f"Saved denoised audio to: {audio_output_prediction}")
def denoise_audio(audio_input):
"""
Gradio callback function to denoise audio.
`audio_input` can be None, a dict {"name", "sample_rate", "data"}, or a tuple (sr, data).
"""
# 1) Handle None
if audio_input is None:
print("No audio was provided.")
return None
# 2) Handle dict vs tuple
if isinstance(audio_input, dict):
sr = audio_input["sample_rate"]
data = audio_input["data"]
else:
sr, data = audio_input
# Write out to a temp file
temp_wav = "temp.wav"
sf.write(temp_wav, data, sr)
# Compute duration
len_data = len(data)
t = len_data / sr # duration in seconds
print("t:", t)
# Paths & config
weights_path = os.path.abspath("./")
name_model = "model_unet"
audio_dir_prediction = os.path.abspath("./")
dir_save_prediction = os.path.abspath("./")
audio_output_prediction = "test.wav"
audio_input_prediction = [temp_wav]
sample_rate = 8000 # model was trained at 8k
min_duration = t
frame_length = 8064
hop_length_frame = 8064
n_fft = 255
hop_length_fft = 63
# Run prediction (denoising)
prediction(weights_path, name_model,
audio_dir_prediction,
dir_save_prediction,
audio_input_prediction,
audio_output_prediction,
sample_rate,
min_duration,
frame_length,
hop_length_frame,
n_fft,
hop_length_fft)
# Return the path to the denoised file so Gradio can play it
return os.path.abspath(audio_output_prediction)
# Example pre-loaded sample files
examples = [
[os.path.abspath("crowdNoise.wav")],
[os.path.abspath("CrowdNoise2.wav")],
[os.path.abspath("whiteNoise.wav")]
]
iface = gr.Interface(
fn=denoise_audio,
inputs="audio",
outputs="audio",
title="Audio to Denoised Audio Application",
description=(
"A simple application to denoise audio speech using a UNet model. "
"Upload your own audio or click one of the examples to load it."
),
article="""
<div style="text-align: center">
<p>All you need to do is to upload or record an audio file and hit 'Submit'.
After processing, you can click 'Play' to hear the denoised audio.
The audio is saved in WAV format.</p>
</div>
""",
examples=examples
)
iface.launch()
|