khalida1wwin commited on
Commit
f27ba88
1 Parent(s): 8d6521c

update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -31
app.py CHANGED
@@ -189,8 +189,8 @@ audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_fra
189
  print(audio_output_prediction)
190
  sf.write(audio_output_prediction , denoise_long[0, :], sample_rate)
191
 
192
- def denoise_audio(audioName,mic):
193
- if audioName != 0:
194
  sr, data = audioName
195
  sf.write("temp.wav",data, sr)
196
  testNo = "temp"
@@ -200,36 +200,29 @@ def denoise_audio(audioName,mic):
200
 
201
 
202
 
203
- else:
204
- sr, data = mic
205
- sf.write("temp.wav",data, sr)
206
- testNo = "temp"
207
- audio_dir_prediction = os.path.abspath("/")+ str(testNo) +".wav"
208
- sample_rate, data = mic[0], mic[1]
209
- len_data = len(data)
210
 
211
 
212
- t = len_data / sample_rate # returns duration but in floats
213
- print("t:",t)
214
- weights_path = os.path.abspath("./")
215
- name_model = "model_unet"
216
- audio_dir_prediction = os.path.abspath("./")
217
- dir_save_prediction = os.path.abspath("./")
218
- audio_output_prediction = "test.wav"
219
- audio_input_prediction = ["temp.wav"]
220
- sample_rate = 8000
221
- min_duration = t
222
- frame_length = 8064
223
- hop_length_frame = 8064
224
- n_fft = 255
225
- hop_length_fft = 63
226
-
227
- dim_square_spec = int(n_fft / 2) + 1
228
-
229
- prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
230
- audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft)
231
- print(audio_output_prediction)
232
- return audio_output_prediction
233
 
234
 
235
  examples = [
@@ -241,7 +234,7 @@ examples = [
241
 
242
 
243
  iface = gr.Interface(fn = denoise_audio,
244
- inputs = ['audio',gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")],
245
  outputs = 'audio',
246
  title = 'audio to denoised Audio Application',
247
  description = 'A simple application to denoise audio speech usinf UNet deep learning model. Upload your own audio, or click one of the examples to load them.',
 
189
  print(audio_output_prediction)
190
  sf.write(audio_output_prediction , denoise_long[0, :], sample_rate)
191
 
192
+ def denoise_audio(audioName):
193
+
194
  sr, data = audioName
195
  sf.write("temp.wav",data, sr)
196
  testNo = "temp"
 
200
 
201
 
202
 
 
 
 
 
 
 
 
203
 
204
 
205
+ t = len_data / sample_rate # returns duration but in floats
206
+ print("t:",t)
207
+ weights_path = os.path.abspath("./")
208
+ name_model = "model_unet"
209
+ audio_dir_prediction = os.path.abspath("./")
210
+ dir_save_prediction = os.path.abspath("./")
211
+ audio_output_prediction = "test.wav"
212
+ audio_input_prediction = ["temp.wav"]
213
+ sample_rate = 8000
214
+ min_duration = t
215
+ frame_length = 8064
216
+ hop_length_frame = 8064
217
+ n_fft = 255
218
+ hop_length_fft = 63
219
+
220
+ dim_square_spec = int(n_fft / 2) + 1
221
+
222
+ prediction(weights_path, name_model, audio_dir_prediction, dir_save_prediction, audio_input_prediction,
223
+ audio_output_prediction, sample_rate, min_duration, frame_length, hop_length_frame, n_fft, hop_length_fft)
224
+ print(audio_output_prediction)
225
+ return audio_output_prediction
226
 
227
 
228
  examples = [
 
234
 
235
 
236
  iface = gr.Interface(fn = denoise_audio,
237
+ inputs = 'audio',
238
  outputs = 'audio',
239
  title = 'audio to denoised Audio Application',
240
  description = 'A simple application to denoise audio speech usinf UNet deep learning model. Upload your own audio, or click one of the examples to load them.',