File size: 7,034 Bytes
9efa351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import streamlit as st
import requests
import re
import torch
from transformers import BertTokenizer, BertForSequenceClassification

# Load tokenizer and model
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model_path = '/Users/kartikrathi/Documents/News_sentiment_analysis/model'
model = BertForSequenceClassification.from_pretrained(model_path)

# Function to analyze sentiment
def analyze_sentiment(text):
    # Tokenize inputs
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
    
    # Perform inference
    with torch.no_grad():
        outputs = model(**inputs)
    
    # Get predicted logits
    logits = outputs.logits
    
    # Determine predicted sentiment
    predicted_class_id = torch.argmax(logits, dim=1).item()
    sentiment = {0: "positive", 1: "negative", 2: "neutral"}
    return sentiment[predicted_class_id]

# Function to fetch news using an API
def fetch_stock_news(symbol):
    api_token = '6679177763bcd9.48465511'  # Replace with your actual API token
    url = f'https://eodhd.com/api/news?s={symbol}&offset=0&limit=2&api_token={api_token}&fmt=json'
    
    try:
        response = requests.get(url)
        response.raise_for_status()  # Raise exception for bad status codes
        data = response.json()
        
        news_list = []
        for article in data:
            title = article.get('title', 'Title not available')
            content = article.get('content', 'Content not available')
            url = article.get('url', 'URL not available')
            date = article.get('date', 'Date not available')
            
            # Remove unwanted sections from content
            cleaned_content = remove_sections(content)
            
            news_list.append({'title': title, 'content': cleaned_content, 'url': url, 'date': date})
        
        return news_list
    
    except requests.exceptions.RequestException as e:
        print(f"Error fetching news for {symbol}: {e}")
        return None

# Function to remove unwanted sections
def remove_sections(content):
    # Patterns to remove
    patterns = [
        r'About\s+.*?[\n\r]+',  # 'About {stock}' section
        r'Safe\s+Harbor.*',  # 'Safe Harbor' section
        r'Story\s+continues.*',  # 'Story continues'
        r'Visit\s+www\.infosys\.com.*',  # 'Visit www.infosys.com...'
        r'Logo',  # 'Logo'
    ]
    
    for pattern in patterns:
        content = re.sub(pattern, '', content, flags=re.IGNORECASE)
    
    return content.strip()

# Streamlit app with multi-page support
def main():
    st.sidebar.title('Navigation')
    page = st.sidebar.radio("Go to", ('Home', 'Portfolio & News'))

    if page == 'Home':
        st.title("Financial News Sentiment Analysis")
        st.markdown("""
            This app performs sentiment analysis on financial news using FinBERT model.
            """)

        # Input text box for user input
        user_input = st.text_area("Enter your financial news text here:", height=200)

        # Perform sentiment analysis when user clicks the button
        if st.button("Analyze"):
            if user_input:
                sentiment = analyze_sentiment(user_input)
                if sentiment == "positive":
                    st.markdown(f"<p style='color:green;font-size:40px;font-weight:bold'>{sentiment}</p>", unsafe_allow_html=True)
                elif sentiment == "negative":
                    st.markdown(f"<p style='color:red;font-size:40px;font-weight:bold'>{sentiment}</p>", unsafe_allow_html=True)
                elif sentiment == "neutral":
                    st.markdown(f"<p style='color:blue;font-size:40px;font-weight:bold'>{sentiment}</p>", unsafe_allow_html=True)
            else:
                st.warning("Please enter some text.")

    elif page == 'Portfolio & News':
        st.title('Portfolio & News')

        # Sidebar to manage portfolio and fetch news
        st.sidebar.subheader('Manage Portfolio & Fetch News')
        st.sidebar.info("Enter your portfolio/company names here to fetch news.")

        # Input fields for portfolio management and news fetching
        portfolio = st.sidebar.text_area("Enter your portfolio/company names (one per line):", height=200)
        
        if st.sidebar.button("Save"):
            # Add ".NSE" suffix to each company name
            shares = portfolio.split("\n")
            shares = [share.strip() + ".NSE" for share in shares if share.strip()]
            st.sidebar.markdown("**Shares**")
            st.sidebar.markdown("\n".join(shares))

        # Button to fetch news and perform sentiment analysis
        if st.sidebar.button("Fetch News & Analyze Sentiment"):
            if portfolio:
                companies = portfolio.split("\n")
                companies = [company.strip() + ".NSE" for company in companies if company.strip()]
                for company in companies:
                    st.subheader(f"Latest News for {company}:")
                    news = fetch_stock_news(company)

                    if news:
                        for article in news:
                            title = article['title']
                            content = article['content']
                            url = article['url']
                            date = article['date']
                            st.markdown(f"**Title:** [{title}]({url}) <span style='color:green;font-size:12px;'>({date})</span>", unsafe_allow_html=True)
                            
                            # Display a truncated version of the content
                            truncated_content = content[:200] + "..."
                            st.markdown(f"**Content:** {truncated_content}")
                            
                            # Expander for full content
                            with st.expander("Expand more"):
                                st.markdown(f"{content}")

                            st.markdown("---")

                            # Analyze sentiment of news content (assuming content is available)
                            if content:
                                sentiment = analyze_sentiment(content)
                                if sentiment == "positive":
                                    sentiment_color = "green"
                                elif sentiment == "negative":
                                    sentiment_color = "red"
                                elif sentiment == "neutral":
                                    sentiment_color = "blue"
                                
                                st.markdown(f"**Sentiment:** <span style='color:{sentiment_color};font-weight:bold'>{sentiment}</span>", unsafe_allow_html=True)
                                st.markdown("---")
                    else:
                        st.warning(f"No news articles found for {company}.")
            else:
                st.warning("Please enter portfolio/company names to fetch news.")

if __name__ == '__main__':
    main()