File size: 25,492 Bytes
d8fcee4
 
 
 
 
 
8ec67ee
d8fcee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f00ac5
d8fcee4
 
 
 
 
 
 
 
 
 
 
 
2f00ac5
d8fcee4
 
 
 
 
 
 
 
 
b9c2637
d8fcee4
 
c73951b
d8fcee4
 
 
 
 
 
 
b9c2637
d8fcee4
51d2448
d8fcee4
 
 
 
 
 
 
 
 
 
 
2f00ac5
d8fcee4
 
 
 
 
 
d8c3206
 
 
d8fcee4
 
 
 
2f00ac5
d8fcee4
 
 
 
b9c2637
d8fcee4
8024d12
e923469
d8c3206
 
8024d12
 
 
 
 
d8c3206
 
bb9a542
91ec6fc
 
 
 
4f26878
8024d12
 
d8c3206
 
a1c1647
 
 
8024d12
2f00ac5
8024d12
 
 
 
 
 
d8c3206
8024d12
d8c3206
 
 
a1c1647
 
 
8024d12
2f00ac5
8024d12
 
 
 
 
 
 
d8fcee4
 
a1cecdb
d8fcee4
 
2f00ac5
 
d8fcee4
a039a6a
d8fcee4
 
 
 
 
e923469
d8fcee4
e7ae5d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline
from huggingface_hub import hf_hub_download

device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.cuda.max_memory_allocated(device=device)
torch.cuda.empty_cache()

def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, refine, high_noise_frac, upscale):
    generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
       
    if Model == "PhotoReal":
        pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
        pipe.enable_xformers_memory_efficient_attention()
        pipe = pipe.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            refiner.enable_xformers_memory_efficient_attention()
            refiner = refiner.to(device)
            torch.cuda.empty_cache()
            int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            if upscale == "Yes":
                refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                refiner.enable_xformers_memory_efficient_attention()
                refiner = refiner.to(device)
                torch.cuda.empty_cache()
                upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
               image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
               return image
    
    if Model == "Anime":
        anime = DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1")
        anime.enable_xformers_memory_efficient_attention()
        anime = anime.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            refiner.enable_xformers_memory_efficient_attention()
            refiner = refiner.to(device)
            torch.cuda.empty_cache()
            int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            if upscale == "Yes":
                refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                refiner.enable_xformers_memory_efficient_attention()
                refiner = refiner.to(device)
                torch.cuda.empty_cache()
                upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
               image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
               return image
                
    if Model == "Disney":
        disney = DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1")
        disney.enable_xformers_memory_efficient_attention()
        disney = disney.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            refiner.enable_xformers_memory_efficient_attention()
            refiner = refiner.to(device)
            torch.cuda.empty_cache()
            int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            
            if upscale == "Yes":
                refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                refiner.enable_xformers_memory_efficient_attention()
                refiner = refiner.to(device)
                torch.cuda.empty_cache()
                upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else: 
               image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
               return image
            
    if Model == "StoryBook":
        story = DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1")
        story.enable_xformers_memory_efficient_attention()
        story = story.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            refiner.enable_xformers_memory_efficient_attention()
            refiner = refiner.to(device)
            torch.cuda.empty_cache()
            int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            
            if upscale == "Yes":
                refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                refiner.enable_xformers_memory_efficient_attention()
                refiner = refiner.to(device)
                torch.cuda.empty_cache()
                upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                
               image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
               return image

    if Model == "SemiReal":
        semi = DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1")
        semi.enable_xformers_memory_efficient_attention()
        semi = semi.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            refiner.enable_xformers_memory_efficient_attention()
            refiner = refiner.to(device)
            torch.cuda.empty_cache()
            image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            
            if upscale == "Yes":
                refiner = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                refiner.enable_xformers_memory_efficient_attention()
                refiner = refiner.to(device)
                torch.cuda.empty_cache()
                upscaled = refiner(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=15, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                
                image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
                torch.cuda.empty_cache()
                return image

    if Model == "Animagine XL 3.0":
        animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0")
        animagine.enable_xformers_memory_efficient_attention()
        animagine = animagine.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            torch.cuda.empty_cache()
            torch.cuda.max_memory_allocated(device=device)
            int_image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
            torch.cuda.empty_cache()
            animagine = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            animagine.enable_xformers_memory_efficient_attention()
            animagine = animagine.to(device)
            torch.cuda.empty_cache()
            image = animagine(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            
            if upscale == "Yes":
                animagine = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                animagine.enable_xformers_memory_efficient_attention()
                animagine = animagine.to(device)
                torch.cuda.empty_cache()
                upscaled = animagine(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                
               image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
               return image

    if Model == "SDXL 1.0":
        
        torch.cuda.empty_cache()
        torch.cuda.max_memory_allocated(device=device)
        sdxl = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
        sdxl.enable_xformers_memory_efficient_attention()
        sdxl = sdxl.to(device)   
        torch.cuda.empty_cache()
    
        if refine == "Yes":
            torch.cuda.max_memory_allocated(device=device)
            torch.cuda.empty_cache()
            image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
            torch.cuda.empty_cache()
            sdxl = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            sdxl.enable_xformers_memory_efficient_attention()
            sdxl = sdxl.to(device)
            torch.cuda.empty_cache()
            refined = sdxl(Prompt, negative_prompt=negative_prompt, image=image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            
            if upscale == "Yes":
                sdxl = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                sdxl.enable_xformers_memory_efficient_attention()
                sdxl = sdxl.to(device)
                torch.cuda.empty_cache()
                upscaled = sdxl(prompt=Prompt, negative_prompt=negative_prompt, image=refined, num_inference_steps=5, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return refined
        else:
            if upscale == "Yes":
                image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0] 
                torch.cuda.empty_cache()
                torch.cuda.max_memory_allocated(device=device)
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                
               image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
        
    if Model == 'FusionXL':
        torch.cuda.empty_cache()
        torch.cuda.max_memory_allocated(device=device)
        pipe = DiffusionPipeline.from_pretrained("circulus/canvers-fusionXL-v1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
        pipe.enable_xformers_memory_efficient_attention()
        pipe = pipe.to(device)
        torch.cuda.empty_cache()
        if refine == "Yes":
            torch.cuda.empty_cache()
            torch.cuda.max_memory_allocated(device=device)
            int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale, output_type="latent").images
            pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
            pipe.enable_xformers_memory_efficient_attention()
            pipe = pipe.to(device)
            torch.cuda.empty_cache()
            image = pipe(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            if upscale == "Yes":
                torch.cuda.empty_cache()
                torch.cuda.max_memory_allocated(device=device)
                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
                return image
        else:
            if upscale == "Yes":
                
                image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
                torch.cuda.empty_cache()
                torch.cuda.max_memory_allocated(device=device)

                upscaler = DiffusionPipeline.from_pretrained("stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16, use_safetensors=True)
                upscaler.enable_xformers_memory_efficient_attention()
                upscaler = upscaler.to(device)
                torch.cuda.empty_cache()
                upscaled = upscaler(prompt=Prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=5, guidance_scale=0).images[0]
                torch.cuda.empty_cache()
                return upscaled
            else:
               image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
               torch.cuda.empty_cache()
               return image
        
    return image
    
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Anime', 'Disney', 'StoryBook', 'SemiReal', 'Animagine XL 3.0', 'SDXL 1.0', 'FusionXL'], value='PhotoReal', label='Choose Model'),
                               gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
                               gr.Slider(512, 1280, 768, step=128, label='Height'),
                               gr.Slider(512, 1280, 768, step=128, label='Width'),
                               gr.Slider(1, maximum=15, value=5, step=.25, label='Guidance Scale'), 
                               gr.Slider(5, maximum=100, value=50, step=5, label='Number of Iterations'), 
                               gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'), 
                               gr.Radio(["Yes", "No"], label='SDXL 1.0 Refiner: Use if the Image has too much Noise', value='No'),
                               gr.Slider(minimum=.9, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %'),
                               gr.Radio(["Yes", "No"], label = 'SD X2 Latent Upscaler?', value="No")],
             outputs=gr.Image(label='Generated Image'), 
             title="Manju Dream Booth V1.8 with SDXL 1.0 Refiner and SD X2 Latent Upscaler - GPU", 
             description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", 
             article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>DOGE: D9QdVPtcU1EFH8jDC8jhU9uBcSTqUiA8h6<br><br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)